Using a shock tube to predict the response of polymeric foam to a blast loading

2006 ◽  
Vol 134 ◽  
pp. 783-787 ◽  
Author(s):  
S. Ouellet ◽  
D. Frost ◽  
A. Bouamoul
2020 ◽  
Vol 10 (24) ◽  
pp. 9061
Author(s):  
Kristoffer Aune Brekken ◽  
Aase Reyes ◽  
Torodd Berstad ◽  
Magnus Langseth ◽  
Tore Børvik

Sandwich panels have proven to be excellent energy absorbents. Such panels may be used as a protective structure in, for example, façades subjected to explosions. In this study, the dynamic response of sandwich structures subjected to blast loading has been investigated both experimentally and numerically, utilizing a shock tube facility. Sandwich panels made of aluminium skins and a core of extruded polystyrene (XPS) with different densities were subjected to various blast load intensities. Low-velocity impact tests on XPS samples were also conducted for validation and calibration of a viscoplastic extension of the Deshpande-Fleck crushable foam model. The experimental results revealed a significant increase in blast load mitigation for sandwich panels compared to skins without a foam core, and that the back-skin deformation and the core compression correlated with the foam density. Numerical models of the shock tube tests were created using LS-DYNA, incorporating the new viscoplastic formulation of the foam material. The numerical models were able to capture the trends observed in the experimental tests, and good quantitative agreement between the experimental and predicted responses was in general obtained. One aim of this study is to provide high-precision experimental data, combined with a validated numerical modelling strategy, that can be used in simulation-based optimisation of sandwich panels exposed to blast loading.


2009 ◽  
Author(s):  
Scott I. Jackson ◽  
John S. Morris ◽  
Larry G. Hill ◽  
Mark Elert ◽  
Michael D. Furnish ◽  
...  
Keyword(s):  

2016 ◽  
Vol 7 (3) ◽  
pp. 340-366 ◽  
Author(s):  
Vegard Aune ◽  
Egil Fagerholt ◽  
Magnus Langseth ◽  
Tore Børvik
Keyword(s):  

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0198968 ◽  
Author(s):  
Maciej Skotak ◽  
Eren Alay ◽  
James Q. Zheng ◽  
Virginia Halls ◽  
Namas Chandra

Author(s):  
J. C. Roberts ◽  
T. P. Harrigan ◽  
E. E. Ward ◽  
D. Nicolella ◽  
L. Francis ◽  
...  

Strains and pressures in the brain are known to be influenced by rotation of the head in response to loading. This brain rotation is governed by the motion of the head, as permitted by the neck, due to loading conditions. In order to better understand the effect neck characteristics have on pressures and strains in the brain, a human head finite element model (HHFEM) was attached to two neck FEMs: a standard, well characterized Hybrid III Anthropometric Test Device neck FEM; and a high fidelity parametric probabilistic human FEM neck that has been hierarchically validated. The Hybrid III neck is well-established in automotive injury prevention studies, but is known to be much stiffer than in vivo human necks. The parametric FEM is based on CT scans and anatomic data, and the components of the model are validated against biomechanical tests at the component and system level. Both integrated head-neck models were loaded using pressure histories based on shock tube exposures. The shock tube loading applied to these head models were obtained using a computational fluid dynamics (CFD) model of the HHFEM surface in front of a 6 inch diameter shock tube. The calculated pressure-time histories were then applied to the head-neck models. The global head rotations, pressures, brain displacements, and brain strains of both head-neck models were compared for shock tube driver pressures from 517 to 862 kPa. The intracranial pressure response occurred in the first 1 to 5 msec, after blast impact, prior to a significant kinematic response, and was very similar between the two models. The global head rotations and the strains in the brain occurred at 20 to 100 msec after blast impact, and both were approximately two times higher in the model using the head parametric probabilistic neck FEM (H2PN), as compared to the model using the head Hybrid III neck FEM (H3N). It was also discovered that the H2PN exhibited an initial backward and small downward motion in the first 10 ms not seen in the H3N. The increased displacements and strains were the primary difference between the two combined models, indicating that neck constraints are a significant factor in the strains induced by blast loading to the head. Therefore neck constraints should be carefully controlled in studies of brain strain due to blast, but neck constraints are less important if pressure response is the only response parameter of primary interest.


2016 ◽  
Vol 40 (4) ◽  
pp. 1307-1325 ◽  
Author(s):  
H. Ousji ◽  
B. Belkassem ◽  
M. A. Louar ◽  
D. Kakogiannis ◽  
B. Reymen ◽  
...  

2018 ◽  
Vol 183 ◽  
pp. 01035
Author(s):  
Karoline Osnes ◽  
Tore Børvik ◽  
Odd Sture Hopperstad

Failure of glass is dominantly brittle, and is caused by microscopic flaws randomly distributed on the surface. Fracture mainly initiates in these flaws, and this leads to a high variability in the glass strength, which depends on geometry, boundary conditions and loading situation. Consequently, the identification of the fracture strength, in e.g. finite element analyses, is not straightforward. For rapid loading conditions, as for blast loading situations, the glass strength is generally increased because flaws need time to grow into cracks. The current study aims to identify the probabilistic fracture strength of glass plates under blast loading as a function of the plate?s boundary conditions, geometry and loading by using a newly proposed strength prediction model. To validate this model in some measure, 12 blast tests on annealed float glass were performed in a shock tube. As expected, the tests showed a large scatter in fracture strength. The strength prediction model captured the main trends found in the experimental tests, but a closer investigation of the strain rate sensitivity of glass was deemed necessary. Finally, the results from the strength prediction model were used as input in a simulation of annealed float glass under blast pressure in the finite element program IMPETUS Afea Solver. By use of a node splitting technique, the simulations captured the behaviour displayed in the experimental tests to a great extent.


AIAA Journal ◽  
1963 ◽  
Vol 1 (6) ◽  
pp. 1417-1418 ◽  
Author(s):  
BO LEMCKE

Sign in / Sign up

Export Citation Format

Share Document