scholarly journals Zooplankton communities in Mediterranean temporary lakes: the case of saline lakes in Cyprus

Author(s):  
Aikaterini Karagianni ◽  
Georgia Stamou ◽  
Matina Katsiapi ◽  
Polina Polykarpou ◽  
Gerald Dörflinger ◽  
...  

Temporary saline lakes are diverse ecosystems mostly located in arid areas. In the Mediterranean region they are among the most remarkable, but also the most threatened habitats; thus, effective management and conservation plans need to consider their special hydrological and ecological features and requirements. They are mainly fishless systems and so zooplankton is the driver of the trophic cascade. Our aim was to determine zooplankton communities' composition and biomass in seven temporary saline lakes of Cyprus and investigate their relation with environmental variables. Salinity ranged between <2 and 300 ppt and was a key factor shaping zooplankton community. In hyposaline conditions zooplankton communities exhibited higher species diversity than in meso- and hypersaline conditions. Hyposaline lakes were dominated by Arctodiaptomus salinus (Daday, 1885), Daphnia magna Straus, 1820 and Moina brachiata (Jurine, 1820) in terms of biomass, while meso- and hypersaline lakes by anostracans Artemia salina (Linnaeus, 1758) and Phallocryptus spinosus (Milne-Edwards, 1840) or M. brachiata and D. magna highlighting competition as another factor shaping the zooplankton community. We conclude that zooplankton reflects environmental pressures, such as salinity fluctuations which are closely related to water level fluctuations, in the mostly fishless Mediterranean temporary saline lakes. Moreover, salinity fluctuations should be considered a key factor for typological considerations in quality assessments, restoration and management plans in temporary saline systems since it can reflect the hydrological variations on the communities across different years and seasons by salinity gradient even for the same water body.

2014 ◽  
Vol 14 (4) ◽  
Author(s):  
Antonio José Gazonato Neto ◽  
Lidiane Cristina da Silva ◽  
Angelo Augusto Saggio ◽  
Odete Rocha

Eutrophication is a process characterized by an increase in the aquatic system productivity, which causes profound changes in the structure of its communities. Owing to the high environmental sensitivity of planktonic species, the study of their communities can indicate the deterioration of the environment. The Jaguari and Jacareí reservoirs are part of the Cantareira System, supplying water to São Paulo inhabitants and that has been affected by several forms of continuous human interference. Here we analyze some properties of the zooplankton community as bioindicators of eutrophication and water quality change. In situ physical and chemical measurements were carried out, water was collected for analysis and quantitative zooplankton samples were taken at eight sites in the two reservoirs, in both seasons, dry and rainy. Species were identified and their numerical abundances and biomasses were determined and used to estimate two biological indices. The overall trophic state and zooplankton structure, the Calanoida/Cyclopoida ratio and the k-dominance curves were associated with the disturbance levels, mainly represented by nutrient river inputs and by water level fluctuations. The Jaguari Reservoir was more eutrophicated than the Jacareí Reservoir, as evidenced by the obtained indices values. The zooplankton community properties used as indicators of the reservoir trophic state were useful monitoring tools.


2019 ◽  
Author(s):  
Beijuan Hu ◽  
Xuren Hu ◽  
Xue Nie ◽  
Xiaoke Zhang ◽  
Naicheng Wu ◽  
...  

Shallow lakes are important for the maintenance of Lake Poyang ecosystem integrity, and zooplankton play an important role in its substance and energy flow. We investigated zooplankton in spring (April), summer (July), autumn (October) and winter (January of the following year) from 2012 to 2016 in a sub-lake of Lake Poyang with seasonal water level fluctuations. The study aims to understand their seasonal dynamics and interannual variation of zooplankton community in relation to environmental variables. A total of 115 species were identified in all samples of the 4 years, comprising 87 Rotifera, 13 Cladocera and 15 Copepoda. Rotifera was the dominant group in quantity and its species richness and abundance were significantly higher than Cladocera and Copepoda (P<0.05, by ANOVA), while Cladocera dominated in biomass. Species richness of Rotifera showed a significant seasonal difference (P<0.05 by ANOVA). The clear decline of zooplankton species richness in spring was mainly due to the dramatic decrease of Rotifera species. Furthermore, both density and biomass of zooplankton showed significant seasonal differences (P<0.05). Generally, the density and biomass of zooplankton were higher in summer and autumn than in winter and spring. Biodiversity indices e.g., Shannon-Wiener index and evenness were dramatically lower in spring than in other seasons. Non-metric multidimensional scaling (NMDS) analysis suggested that the zooplankton communities can be divided into three groups: spring community, summer–autumn community and winter community associated with distinct indicator species. The results of species richness and community analysis showed that the seasonal succession of zooplankton communities did not have interannual reproducibility. Redundancy analysis revealed that water temperature (WT), conductivity, pH and dissolved oxygen (DO) had significant effects on the zooplankton community. In addition, water level fluctuations, disturbance by wintering waterbirds and artificial water level control during dry season have potential effects on zooplankton community structure too. This study is helpful to further understand the ecosystem stability of lake connected with rivers and provide scientific guidance for protection of lake wetlands.


2019 ◽  
Author(s):  
Beijuan Hu ◽  
Xuren Hu ◽  
Xue Nie ◽  
Xiaoke Zhang ◽  
Naicheng Wu ◽  
...  

Shallow lakes are important for the maintenance of Lake Poyang ecosystem integrity, and zooplankton play an important role in its substance and energy flow. We investigated zooplankton in spring (April), summer (July), autumn (October) and winter (January of the following year) from 2012 to 2016 in a sub-lake of Lake Poyang with seasonal water level fluctuations. The study aims to understand their seasonal dynamics and interannual variation of zooplankton community in relation to environmental variables. A total of 115 species were identified in all samples of the 4 years, comprising 87 Rotifera, 13 Cladocera and 15 Copepoda. Rotifera was the dominant group in quantity and its species richness and abundance were significantly higher than Cladocera and Copepoda (P<0.05, by ANOVA), while Cladocera dominated in biomass. Species richness of Rotifera showed a significant seasonal difference (P<0.05 by ANOVA). The clear decline of zooplankton species richness in spring was mainly due to the dramatic decrease of Rotifera species. Furthermore, both density and biomass of zooplankton showed significant seasonal differences (P<0.05). Generally, the density and biomass of zooplankton were higher in summer and autumn than in winter and spring. Biodiversity indices e.g., Shannon-Wiener index and evenness were dramatically lower in spring than in other seasons. Non-metric multidimensional scaling (NMDS) analysis suggested that the zooplankton communities can be divided into three groups: spring community, summer–autumn community and winter community associated with distinct indicator species. The results of species richness and community analysis showed that the seasonal succession of zooplankton communities did not have interannual reproducibility. Redundancy analysis revealed that water temperature (WT), conductivity, pH and dissolved oxygen (DO) had significant effects on the zooplankton community. In addition, water level fluctuations, disturbance by wintering waterbirds and artificial water level control during dry season have potential effects on zooplankton community structure too. This study is helpful to further understand the ecosystem stability of lake connected with rivers and provide scientific guidance for protection of lake wetlands.


Author(s):  
Dorothée Vincent ◽  
Christophe Luczak ◽  
Benoît Sautour

Short-term changes in zooplankton community structure and distribution in relation to changes in hydrological features were studied during summer in two distinct areas of Arcachon Bay (France) from July to September 1986. One sampling site was chosen in the northern part of the bay, influenced by oceanic inputs, and the other one in the south-eastern part of the bay, close to an estuarine zone, influenced by the River Leyre's inputs. Three different zooplankton assemblages were identified according to a temperature–salinity gradient: (i) an estuarine assemblage dominated by Acartia bifilosa and Acartia tonsa; (ii) an autochthonous assemblage composed of Acartia discaudata; and (iii) a coastal neritic one composed of Paracalanus parvus, Oncaea venusta and Penilia avirostris. All these latter assemblages remained stable during most part of the study period. However, a brief climatic event (storm event) occurred in mid-August and gave rise to a sharp decrease in temperatures along with significant changes in zooplankton structure and distributions in the bay. The estuarine community vanished and was replaced by the autochthonous community. In the northern part of the bay, the coastal neritic community succeeded the previously observed autochthonous community.  The effect of this brief climatic event was durable since recovery time lasted two weeks with regard to hydrological features and zooplankton communities. In addition, the climatic event also had ecological consequences since it permitted spreading of planktonic organisms from small-localized areas throughout the bay.


2004 ◽  
Vol 61 (11) ◽  
pp. 2111-2125 ◽  
Author(s):  
Richard P Barbiero ◽  
Marc L Tuchman

The crustacean zooplankton communities in Lakes Michigan and Huron and the central and eastern basins of Lake Erie have shown substantial, persistent changes since the invasion of the predatory cladoceran Bythotrephes in the mid-1980s. A number of cladoceran species have declined dramatically since the invasion, including Eubosmina coregoni, Holopedium gibberum, Daphnia retrocurva, Daphnia pulicaria, and Leptodora kindti, and overall species richness has decreased as a result. Copepods have been relatively unaffected, with the notable exception of Meso cyclops edax, which has virtually disappeared from the lakes. These species shifts have for the most part been consistent and equally pronounced across all three lakes. Responses of crustacean species to the Bythotrephes invasion do not appear to be solely a consequence of size, and it is likely that other factors, e.g., morphology, vertical distribution, or escape responses, are important determinants of vulnerability to predation. Our results indicate that invertebrate predators in general, and invasive ones in particular, can have pronounced, lasting effects on zooplankton community structure.


2015 ◽  
Vol 27 (2) ◽  
pp. 171-190 ◽  
Author(s):  
Ahmed Mohamed El-Otify ◽  
Isaac Agaiby Iskaros

Aim: The composition, abundance, community structure of potamoplankton and major physical and chemical variables of the Nile water in Upper Egypt were investigated to assess its status in different seasons during 2007.MethodsWater samples were collected seasonally during 2007 from six investigated sites from variable depths at levels of 0, 2.5 and 5 m. The area of this investigation is defined as the southern 120 Km of the main stream of the Nile in Upper Egypt (24° 04’ – 25° 00’ latitudes and 32° 51’ – 32° 54’ longitudes), downstream of Aswan Old Dam.ResultsAltogether, 121 potamoplankton species, of which 85 related to phytoplankton and 36 appertaining to zooplankton were recorded. Most numerous phytoplankton were Chlorophyceae (42 species) followed by Bacillariophyceae (30 species). Cyanobacteria and Dinophyceae were less numerous with only 11 and 2 species, respectively. Zooplankton species were mainly belonging to three systematic groups namely; Rotifera (24 species), Copepoda (3 species) and Cladocera (9 species). Besides, other rare zooplankton including Platyhelminthes, Nemata and Ciliophora were sparsely encountered. The main hydrological conditions characterizing the investigated area include water level fluctuations (˂82 - ˃85 m above sea level), relatively high current velocity (0.8 - 1.3 m sec–1) and disposal of wastewater. Plankton populations were variably but rather weakly dependent on the major nutrients due to their excessive availability in accessible form for uptake by the producers. For phytoplankton, the community structure was categorized in relation to temperature, pH, SO42– and Mg2+. For zooplankton, the community structure was categorized in relation to conductivity as well as Mg2+. Sampling intervals were inadequate to demonstrate the existing successional pattern of the Nile potamoplankton community. Alterations in the phytoplankton community structure accompanied changes in water temperature represented by the alternate dominance between diatoms and cyanobacteria, while zooplankton community was always dominated by rotifers. Phytoplankton populations were numerically more abundant in autumn and zooplankton peaked in spring.ConclusionsWastewater disposal restricted the abundance of the Nile zooplankton assemblages mainly due to the numerical decline of Rotifera and Cladocera. Otherwise, wastewater did not exert major limits for phytoplankton. The data obtained in this investigation will be crucial to understand potamoplankton regulation and contribute to the knowledge regarding the Limnology of the Nile basin.


2020 ◽  
Author(s):  
Jan Niklas Macher ◽  
Berry B. van der Hoorn ◽  
Katja T. C. A. Peijnenburg ◽  
Lodewijk van Walraven ◽  
Willem Renema

AbstractZooplankton are key players in marine ecosystems, linking primary production to higher trophic levels. The high abundance and high taxonomic diversity renders zooplankton ideal for biodiversity monitoring. However, taxonomic identification of the zooplankton assemblage is challenging due to its high diversity, subtle morphological differences and the presence of many meroplanktonic species, especially in coastal seas. Molecular techniques such as metabarcoding can help with rapid processing and identification of taxa in complex samples, and are therefore promising tools for identifying zooplankton communities. In this study, we applied metabarcoding of the mitochondrial cytochrome c oxidase I gene to zooplankton samples collected along a latitudinal transect in the North Sea, a shelf sea of the Atlantic Ocean. Northern regions of the North Sea are influenced by inflow of oceanic Atlantic waters, whereas the southern parts are characterised by more coastal waters. Our metabarcoding results indicated strong differences in zooplankton community composition between northern and southern areas of the North Sea, particularly in the classes Copepoda, Actinopterygii (ray-finned fishes) and Polychaeta. We compared these results to the known distributions of species reported in previous studies, and by comparing the abundance of copepods to data obtained from the Continuous Plankton Recorder (CPR). We found that our metabarcoding results are mostly congruent with the reported distribution and abundance patterns of zooplankton species in the North Sea. Our results highlight the power of metabarcoding to rapidly assess complex zooplankton samples, and we suggest that the technique could be used in future monitoring campaigns and biodiversity assessments.HighlightsZooplankton communities are different in northern and southern areas of the North SeaMetabarcoding results are consistent with known species distributions and abundanceMetabarcoding allows for fast identification of meroplanktonic species


2021 ◽  
Vol 4 ◽  
Author(s):  
Frederic Rimet ◽  
Teofana Chonova ◽  
Gilles Gassiole ◽  
Maria Kahlert ◽  
François Keck ◽  
...  

Diatoms (Bacillariophyta) are ubiquitous microalgae, which present a huge taxonomic diversity, changing in correlation with differing environmental conditions. This makes them excellent ecological indicators for various ecosystems and ecological problematics (ecotoxicology, biomonitoring, paleo-environmental reconstruction …). Current standardized methodologies for diatoms are based on microscopic determinations, which is time consuming and prone to identification uncertainties. DNA metabarcoding has been proposed as a way to avoid these flaws, enabling the sequencing of a large quantity of barcodes from natural samples. A taxonomic identity is given to these barcodes by comparing their sequences to a barcoding reference library. However, to identify environmental sequences correctly, the reference database should contain a representative number of reference sequences to ensure a good coverage of diatom diversity. Moreover, the reference database needs to be carefully taxonomically curated by experts, as its content has an obvious impact on species detection. Diat.barcode is an open-access library for diatoms linking diatom taxonomic identities to rbcL barcode sequences (a chloroplast marker suitable for species-level identification of diatoms), which has been maintained since 2012. Data are accumulated from three sources: (1) the NCBI nucleotide database, (2) unpublished sequencing data of culture collections and more recently (3) environmental sequences. Since 2017, an international network of experts in diatom taxonomy curate this library. The last version of the database (version 9.2), includes 8066 entries that correspond to more than 280 different genera and 1490 different species. In addition to the taxonomic information, morphological features (e.g. biovolumes, chloroplasts, etc.), life-forms (mobility, colony-type) and ecological features (taxa preferences to pollution) are given. The database can be downloaded from the website (www6.inrae.fr/carrtel-collection/Barcoding-database/) or directly through the R package diatbarcode. Ready-to-use files for commonly used metabarcoding pipelines (Mothur and DADA2) are also available.


Author(s):  
Seòna R Wells ◽  
Eileen Bresnan ◽  
Kathryn Cook ◽  
Dafne Eerkes-Medrano ◽  
Margarita Machairopoulou ◽  
...  

Abstract Major changes in North Atlantic zooplankton communities in recent decades have been linked to climate change but the roles of environmental drivers are often complex. High temporal resolution data is required to disentangle the natural seasonal drivers from additional sources of variability in highly heterogeneous marine systems. Here, physical and plankton abundance data spanning 2003–2017 from a weekly long-term monitoring site on the west coast of Scotland were used to investigate the cause of an increasing decline to approximately -80± 5% in annual average total zooplankton abundance from 2011 to 2017. Generalized additive mixed models (GAMMs), with an autoregressive correlation structure, were used to examine seasonal and inter-annual trends in zooplankton abundance and their relationship with environmental variables. Substantial declines were detected across all dominant taxa, with ∼ 30–70% of the declines in abundance explained by a concurrent negative trend in salinity, alongside the seasonal cycle, with the additional significance of food availability found for some taxa. Temperature was found to drive seasonal variation but not the long-term trends in the zooplankton community. The reduction in salinity had the largest effect on several important taxa. Salinity changes could partly be explained by locally higher freshwater run-off driven by precipitation as well as potential links to changes in offshore water masses. The results highlight that changes in salinity, caused by either freshwater input (expected from climate predictions) or fresher offshore water masses, may adversely impact coastal zooplankton communities and the predators that depend on them.


2019 ◽  
Vol 31 ◽  
Author(s):  
Lúcia Helena Sipaúba-Tavares ◽  
Rodrigo Ney Millan ◽  
Érica Camargo Oliveira Capitano ◽  
Bruno Scardoelli-Truzzi

Abstract Aim Limnological conditions, phytoplankton and zooplankton communities in a fishpond highly affected by management during the dry and rainy seasons are investigated. Methods Water samples were analyzed for physicochemical parameters; soil samples were analyzed for macro- and micro-nutrients, phytoplankton and zooplankton communities, at four sites, during eight months in the rainy and dry seasons. Distance-based linear model (DISTLM) was applied with Akaike Information Criterion (AIC), where the influence of environmental variables in the variation of phytoplankton and zooplankton composition could be assessed and the best model could be selected. Results The multiparameter test revealed that variables pH, TSS and TP better explain the composition of the biotic community (AICc = 45.6; R2 = 0.80). Chlorophyceae was the dominant group with 32 taxa, or rather, 75-85% of total phytoplankton, with high density at 2,365-4,180 ind.L-1 during the sampling period. Rotifera was the most abundant group in the zooplankton community during the two seasons, except at IW2 during the dry season, when Copepoda had a higher density, namely, 52% of total zooplankton community at this site. Conclusions The contribution of allochthonous material to the fishpond during the two seasons mainly consists of macro- and micro-nutrients and thermotolerant coliforms that influenced the plankton community and enhanced high Cyanobacteria density in the rainy season. Plankton community in the studied pond was characteristic of small water bodies. Management protocol in places with continuous water flow according to the region may be an important tool to optimize and to avoid risks in fish production.


Sign in / Sign up

Export Citation Format

Share Document