scholarly journals Carbon Dioxide (CO2) Sequestration In Bio-Concrete, An Overview

2017 ◽  
Vol 103 ◽  
pp. 05016 ◽  
Author(s):  
A. Faisal Alshalif ◽  
J.M. Irwan ◽  
N. Othman ◽  
M.M. Zamer ◽  
L.H. Anneza
2007 ◽  
Vol 21 (6) ◽  
pp. 3334-3340 ◽  
Author(s):  
Zhongxian Cheng ◽  
Youhua Ma ◽  
Xin Li ◽  
Wei-Ping Pan ◽  
Zhiming Zhang

2016 ◽  
Vol 101 ◽  
pp. 408-415 ◽  
Author(s):  
Loretta Gratani ◽  
Rosangela Catoni ◽  
Giacomo Puglielli ◽  
Laura Varone ◽  
Maria Fiore Crescente ◽  
...  

Author(s):  
Zarina Itam ◽  
Hafiz Zawawi ◽  
Yuovendra Sivaganese ◽  
Salmia Beddu ◽  
Nur Liyana Mohd Kamal

In recent years, the production of cement has grown globally in a very rapid manner due to the modernization of the world we live in, and after fossil fuels and land-use change, cement production is the third-largest source of anthropogenic emissions of carbon dioxide, CO2. Cement being the primary binding material for concrete and with the prospects for the concrete industry continues to grow so will the emissions of CO2. Hence, a method to reduce the CO2 production while keeping up with the progression of the concrete industry is very crucial in current times. This is where CO2 sequestration comes in. It is a process where CO2 is converted into a mineral which will then be trapped into the concrete forever. Required data to carry out the research between CO2 sequestered concrete and concrete without CO2 have been observed, obtained and tabulated as necessary. These data are then used to compare the concrete samples with one another and also prove the theoretical effects of CO2 exposure to concrete. Hence, experimental results on the compressive strength of the concrete samples for 7, 14 and 28 days has also been tabulated, graphed and further disputed. The objective of this research is mainly to determine the compressive strength of CO2 sequestered concrete in comparison with concrete without CO2 in order to decrease the effects the concrete industry has on the environment. The compressive strength of concrete samples with sequestration of CO2 gas is expected to be higher than of the concrete without CO2.


2022 ◽  
Vol 23 (2) ◽  
pp. 957
Author(s):  
Franziska Steger ◽  
Johanna Reich ◽  
Werner Fuchs ◽  
Simon K.-M. R. Rittmann ◽  
Georg M. Gübitz ◽  
...  

Strategies for depleting carbon dioxide (CO2) from flue gases are urgently needed and carbonic anhydrases (CAs) can contribute to solving this problem. They catalyze the hydration of CO2 in aqueous solutions and therefore capture the CO2. However, the harsh conditions due to varying process temperatures are limiting factors for the application of enzymes. The current study aims to examine four recombinantly produced CAs from different organisms, namely CAs from Acetobacterium woodii (AwCA or CynT), Persephonella marina (PmCA), Methanobacterium thermoautotrophicum (MtaCA or Cab) and Sulphurihydrogenibium yellowstonense (SspCA). The highest expression yields and activities were found for AwCA (1814 WAU mg−1 AwCA) and PmCA (1748 WAU mg−1 PmCA). AwCA was highly stable in a mesophilic temperature range, whereas PmCA proved to be exceptionally thermostable. Our results indicate the potential to utilize CAs from anaerobic microorganisms to develop CO2 sequestration applications.


Sign in / Sign up

Export Citation Format

Share Document