scholarly journals Carbon Dioxide Sequestration in Concrete and its Effects on ConcreteCompressive Strength

Author(s):  
Zarina Itam ◽  
Hafiz Zawawi ◽  
Yuovendra Sivaganese ◽  
Salmia Beddu ◽  
Nur Liyana Mohd Kamal

In recent years, the production of cement has grown globally in a very rapid manner due to the modernization of the world we live in, and after fossil fuels and land-use change, cement production is the third-largest source of anthropogenic emissions of carbon dioxide, CO2. Cement being the primary binding material for concrete and with the prospects for the concrete industry continues to grow so will the emissions of CO2. Hence, a method to reduce the CO2 production while keeping up with the progression of the concrete industry is very crucial in current times. This is where CO2 sequestration comes in. It is a process where CO2 is converted into a mineral which will then be trapped into the concrete forever. Required data to carry out the research between CO2 sequestered concrete and concrete without CO2 have been observed, obtained and tabulated as necessary. These data are then used to compare the concrete samples with one another and also prove the theoretical effects of CO2 exposure to concrete. Hence, experimental results on the compressive strength of the concrete samples for 7, 14 and 28 days has also been tabulated, graphed and further disputed. The objective of this research is mainly to determine the compressive strength of CO2 sequestered concrete in comparison with concrete without CO2 in order to decrease the effects the concrete industry has on the environment. The compressive strength of concrete samples with sequestration of CO2 gas is expected to be higher than of the concrete without CO2.

Neutron ◽  
2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Abdul Wahab Abro ◽  
Aneel Kumar ◽  
Manthar Ali Keerio ◽  
Zubair Hussain Shaikh ◽  
Naraindas Bheel ◽  
...  

Concrete is frequently utilized infra-structural construction material all over the world. Cement is the main part of the concrete, during its manufacturing emission of gases such as carbon dioxide (CO2) from cement factories create greenhouse effect. In these days various natural pozzolanic materials are used as partial replacement of cement to enhance strength and durability and to reduction in consumption of cement consequently reduction in carbon dioxide (CO2) emission. The aim of this research is to investigate the effect of groundnut shell ash as a cement replacement material on workability and compressive strength of concrete. One mix of ordinary concrete and five mixes of modified concrete were prepared, where cement is replaced by groundnut shell ash from 3% to 15% by weight of cement, with 3% increment with 1:2:4 binding ratio mixed with 0.5 water/cement ratio. The workability and compressive strength of concrete was investigated. The obtained outcomes demonstrated that, groundnut shell ash as a cement replacement material have significant effect on compressive strength of concrete.


Author(s):  
Eko Riyanto ◽  
Eksi Widyananto ◽  
Rahul Ray Renaldy

ABSTRACT Cement Portland is an essential ingredient in infrastructure development, but in portland cement production, there is a release of carbon dioxide (CO2). Innovation in materials in the construction of mortars, namely geopolymer mortars, is expected to reduce cement and air pollution. The research using experimental methods, aimed at locating the effect of the use of silica fume and quick lime with variations of silica fume: quick lime 90:10, 80:20, 70:30, 60:40, 50:50, using a cube mold of 5 x 5 x 5 cm as much as 120 items, for testing age 7, 14, 28 days. Research has a compressive strength with an optimum geopolymer mortar on a variation of silica fume: quick lime 70:30, which is 3.52 MPa at the age of 28. Based upon compressive strength results, apply the age of mortar 7, 14, 28 days known the longer a strong mortar age agency.  Silica fume and quick lime may be used as alternative materials to replace cement. Based on ASTM C 270 to imply mortars type K and type O. ABSTRAKSemen portland merupakan bahan material penting dalam pembangunan khususnya di bidang teknik sipil, namun dalam proses produksi semen portland terjadi pelepasan karbon dioksida (CO2). Perlu adanya inovasi bahan dalam pembuatan mortar yaitu mortar geopolimer yang diharapkan dapat mengurangi penggunaan semen dan polusi udara. Penelitian ini menggunakan metode eksperimental, bertujuan mengetahui pengaruh penggunaan silica fume dan kapur tohor terhadap mortar geopolimer dengan variasi silica fume:kapur tohor 90:10, 80:20, 70:30, 60:40, 50:50, benda uji berbentuk kubus berukuran 5 x 5 x 5 cm sebanyak 120 benda uji, pengujian umur 7, 14,  28 hari. Hasil penelitian didapat kuat tekan optimum mortar geopolimer pada variasi silica fume:kapur tohor 70:30 yaitu 3,52 MPa pada umur 28 hari. Berdasarkan hasil kuat tekan pengaruh umur mortar 7, 14, 28 hari diketahui semakin lama umur mortar kuat tekan semakin meningkat. Silica fume dan kapur tohor dapat digunakan sebagai bahan alternatif pengganti semen. Berdasarkan ASTM C 270 termasuk dalam mortar tipe K dan tipe O.


2021 ◽  
Author(s):  
Wenzhang Li ◽  
Keke Wang ◽  
yanfang Ma ◽  
Yang Liu ◽  
Weixin Qiu ◽  
...  

The ever-growing factitious over-consumption of fossil fuels and the accompanying massive emissions of CO2 have caused severe energy crisis and environmental issues. Photoelectrochemical (PEC) reduction of CO2 that can combine...


2020 ◽  
Vol 846 ◽  
pp. 207-212
Author(s):  
Ming Gin Lee ◽  
Yung Chih Wang ◽  
Wan Xuan Xiao ◽  
Ming Ju Lee ◽  
Tuz Yuan Huang

This study was conducted to assess the effect of CO2 curing on the compressive strength of high strength pervious concrete. The factors studied to evaluate compressive strength of concrete on CO2 curing pressure, curing time, and age of specimen at testing. Three Aggregate sizes, three CO2 curing pressures, three CO2 curing time, and three testing ages were used in this investigation. The research tried to produce a high strength pervious concrete and use carbon dioxide for curing to find out whether it could enhance the compressive strength. The results show that the compressive strength of the control group increases rapidly and its 90-day compressive strength closed to 60 MPa. The 1-day compressive strength has a major impact after CO2 curing and their strength decreased by about 0% to 50% as compared to the control group. However, it is observed that there is only slight difference in relationship between modulus of elasticity and compressive strength obtained from 100 by 200mm cylinders with CO2 curing.


Author(s):  
Jeffrey Amelse

Mitigation of global warming requires an understanding of where energy is produced and consumed, the magnitude of carbon dioxide generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between and need for both CO2 and biomass CARBON sequestration. Short reviews are provided for prior technologies proposed for reducing CO2 emissions from fossil fuels or substituting renewable energy, focusing on their limitations. None offer a complete solution. Of these, CO2 sequestration is poised to have the largest impact. We know how to do it. It will just cost money, and scale-up is a huge challenge. Few projects have been brought forward to semi-commercial scale. Transportation accounts for only about 30% of U.S. overall energy demand. Biofuels penetration remains small, and thus, they contribute a trivial amount of overall CO2 reduction, even though 40% of U.S. corn and 30% of soybeans are devoted to their production. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient, and an inefficient use of biomass carbon. Both biofuels and CO2 sequestration reduce FUTURE CO2 emissions from continued use of fossil fuels. They will not remove CO2 ALREADY in the atmosphere. The only way to do that is to break the Carbon Cycle by growing biomass from atmospheric CO2 and sequestering biomass CARBON. Theoretically, sequestration of only a fraction of the world’s tree leaves, which are renewed every year, can get the world to Net Zero CO2 without disturbing the underlying forests.


2021 ◽  
Author(s):  
Palash Badjatya ◽  
Abdullah Akca ◽  
Daniela Fraga Alvarez ◽  
Baoqi Chang ◽  
Siwei Ma ◽  
...  

This study describes and demonstrates a carbon-negative process for manufacturing cement from widely abundant seawater-derived magnesium (Mg) feedstocks. In contrast to conventional Portland cement, which starts with carbon-containing limestone as the source material, the proposed process uses membrane-free electrolyzers to facilitate the conversion of carbon-free magnesium ions (Mg2+) in seawater into magnesium hydroxide (Mg(OH)2) precursors for the production of Mg-based cement. After a low-temperature carbonation curing step converts Mg(OH)2 into magnesium carbonates through reaction with carbon dioxide (CO2), the resulting Mg-based binders can exhibit compressive strength comparable to that achieved by Portland cement after curing for only two days. Although the proposed “cement-from-seawater” process requires similar energy use per ton of cement as existing processes, its potential to achieve a carbon-negative footprint makes it highly attractive to decarbonize one of the most carbon intensive industries.


2017 ◽  
Vol 103 ◽  
pp. 05016 ◽  
Author(s):  
A. Faisal Alshalif ◽  
J.M. Irwan ◽  
N. Othman ◽  
M.M. Zamer ◽  
L.H. Anneza

2016 ◽  
Vol 56 (1) ◽  
pp. 108 ◽  
Author(s):  
Mei Bai ◽  
David W. T. Griffith ◽  
Frances A. Phillips ◽  
Travis Naylor ◽  
Stephanie K. Muir ◽  
...  

Accurate measurements of methane (CH4) emissions from feedlot cattle are required for verifying greenhouse gas (GHG) accounting and mitigation strategies. We investigate a new method for estimating CH4 emissions by examining the correlation between CH4 and carbon dioxide (CO2) concentrations from two beef cattle feedlots in Australia representing southern temperate and northern subtropical locations. Concentrations of CH4 and CO2 were measured at the two feedlots during summer and winter, using open-path Fourier transform infrared spectroscopy. There was a strong correlation for the concentrations above background of CH4 and CO2 with concentration ratios of 0.008 to 0.044 ppm/ppm (R2 >0.90). The CH4/CO2 concentration ratio varied with animal diet and ambient temperature. The CH4/CO2 concentration ratio provides an alternative method to estimate CH4 emissions from feedlots when combined with CO2 production derived from metabolisable energy or heat production.


Sign in / Sign up

Export Citation Format

Share Document