scholarly journals Contribution of geophysical methods to the detection of underground cavities in salt series. Development in different projects in Morocco (roads, rail, etc…)

2018 ◽  
Vol 149 ◽  
pp. 02083
Author(s):  
M.K. Tlemçani ◽  
L. Ait Brahim ◽  
A. El Mahsani ◽  
A. Labrihmi
2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Amin Amini ◽  
Hamidreza Ramazi

AbstractThis paper is devoted to the application of the Combined Resistivity Sounding and Profiling electrode configuration (CRSP) to detect underground cavities. Electrical resistivity surveying is among the most favorite geophysical methods due to its nondestructive and economical properties in a wide range of geosciences. Several types of the electrode arrays are applied to detect different certain objectives. In one hand, the electrode array plays an important role in determination of output resolution and depth of investigations in all resistivity surveys. On the other hand, they have their own merits and demerits in terms of depth of investigations, signal strength, and sensitivity to resistivity variations. In this article several synthetic models, simulating different conditions of cavity occurrence, were used to examine the responses of some conventional electrode arrays and also CRSP array. The results showed that CRSP electrode configuration can detect the desired objectives with a higher resolution rather than some other types of arrays. Also a field case study was discussed in which electrical resistivity approach was conducted in Abshenasan expressway (Tehran, Iran) U-turn bridge site for detecting potential cavities and/or filling loose materials. The results led to detect an aqueduct tunnel passing beneath the study area.


2018 ◽  
Vol 23 (3) ◽  
pp. 377-381
Author(s):  
Widodo Widodo ◽  
Azizatun Azimmah ◽  
Djoko Santoso

Investigating underground cavities is vital due to their potential for subsidence and total collapse. One of the proven geophysical methods for locating underground cavities at a shallow depth is ground penetrating radar (GPR). GPR uses contrasting dielectric permittivity, resistivity, and magnetic permeability to map the subsurface. The aim of this research is to prove that GPR can be applied to detect underground cavities in the Japan Cave of Taman Hutan Raya Djuanda, in Bandung, Indonesia. Forward modeling was performed first using three representative synthetic models before field data were acquired. The data acquisition was then conducted using a 100 MHz GPR shielded antenna with three lines of 80 m and one additional line 10 m long. The result showed a region of different reflection amplitude, which was proven to be the air-filled cavities.


2018 ◽  
Vol 149 ◽  
pp. 02083
Author(s):  
M.K. Tlemçani ◽  
L. Ait Brahim ◽  
A. El Mahsani ◽  
A. Labrihmi

As part of the geotechnical studies of a road project, a geophysical investigation by electrical tomography, microgravimetry, and boreholes, was carried out in order to locate if the areas can present or not a risks of ground instability along the road alignment. The road is located near a rock salt mine. This geophysical survey had demonstrated that the area may present major risks for the stability of the road platform. This risk is related to the existence of large expanses of saliferous rocks.The dissolution and exploitation of salt provoked underground voids under the future road. The results of this geophysical survey have allowed the designer office to propose more suitable solutions to solve this problem or even the possibility of shifting another site.


2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


Geotecnia ◽  
2016 ◽  
Vol 137 ◽  
pp. 141-155
Author(s):  
Herson Oliveira da Rocha ◽  
◽  
Lúcia Maria Costa e Silva ◽  
João Andrade dos Reis Júnior ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document