scholarly journals Application Of Logistic Regression Method To Produce Landslide Susceptibility Map: A Case Study Of Tetouan Mazari, Morocco

2018 ◽  
Vol 149 ◽  
pp. 02082
Author(s):  
L. Ait Brahim ◽  
M. Elmoulat

The main purpose of this study is to use logistic regression (RL) model to map landslide susceptibility in and around the area of Tetouan Mazari in the Northern Morocco. Parameters, such as lithology, slope gradient, slope aspect, faults, drainage lines, and hillshade, were considered. Landslide susceptibility map was produced using RL method and then compared and validated. Before the modeling and validation, the observed landslides were separated into two groups. The first group was for training, and the other group was for validation steps. The accuracy of the model was measured by fitting them to a validation set of observed landslides. For validation process, the half landslides remaining was used. The final map was classified into five classes: Very High (32%), High (40%), Medium (7%), Low (7%) and Nil (15%). According to these values logistic regression was determined to be one of the most accurate method to generate landslide susceptibility map. Last but not least, logistic regression model can be used to manage and mitigate hazards related to landslides and to aid in land-use planning for the city of Tetouan‥

2015 ◽  
Vol 4 (2) ◽  
pp. 16-33 ◽  
Author(s):  
Halil Akıncı ◽  
Ayşe Yavuz Özalp ◽  
Mehmet Özalp ◽  
Sebahat Temuçin Kılıçer ◽  
Cem Kılıçoğlu ◽  
...  

Artvin is one of the provinces in Turkey where landslides occur most frequently. There have been numerous landslides characterized as natural disaster recorded across the province. The areas sensitive to landslides across the province should be identified in order to ensure people's safety, to take the necessary measures for reducing any devastating effects of landslides and to make the right decisions in respect to land use planning. In this study, the landslide susceptibility map of the Central district of Artvin was produced by using Bayesian probability model. Parameters including lithology, altitude, slope, aspect, plan and profile curvatures, soil depth, topographic wetness index, land cover, and proximity to the road and stream were used in landslide susceptibility analysis. The landslide susceptibility map produced in this study was validated using the receiver operating characteristics (ROC) based on area under curve (AUC) analysis. In addition, control landslide locations were used to validate the results of the landslide susceptibility map and the validation analysis resulted in 94.30% accuracy, a reliable outcome for this map that can be useful for general land use planning in Artvin.


2021 ◽  
Vol 33 ◽  
Author(s):  
Mohammed El-Fengour ◽  
Hanifa El Motaki ◽  
Aissa El Bouzidi

This study aimed to assess landslide susceptibility in the Sahla watershed in northern Morocco. Landslides hazard is the most frequent phenomenon in this part of the state due to its mountainous precarious environment. The abundance of rainfall makes this area suffer mass movements led to a notable adverse impact on the nearby settlements and infrastructures. There were 93 identified landslide scars. Landslide inventories were collected from Google Earth image interpretations. They were prepared out of landslide events in the past, and future landslide occurrence was predicted by correlating landslide predisposing factors. In this paper, landslide inventories are divided into two groups, one for landslide training and the other for validation. The Landslide Susceptibility Map (LSM) is prepared by Logistic Regression (LR) Statistical Method. Lithology, stream density, land use, slope curvature, elevation, topographic wetness index, slope aspect, and slope angle were used as conditioning factors. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was employed to examine the performance of the model. In the analysis, the LR model results in 96% accuracy in the AUC. The LSM consists of the predicted landslide area. Hence it can be used to reduce the potential hazard linked with the landslides in the Sahla watershed area in Rif Mountains in northern Morocco.


Author(s):  
Barahim Adnan A. ◽  
Khanbari Khaled M. ◽  
Algodami Amal F. ◽  
Almadhaji Ziad A. ◽  
Adris Ahmed M.

A slope stability assessment of Wadi Dhahr area, located northwest of Sana’a the capital of Yemen, was carried out in this study. The study area consists of sandstone and volcanic rocks that are deformed by number of faults, joints and basaltic dykes. All the important factors affecting slope stability in the area such as slope angle, slope height, discontinuities measurements, weathering, vegetation cover, rainfall and previous landslides were evaluated. The study was conducted based on the integration of field investigation and satellite image processing. A landslide susceptibility map was produced with the Landslide Possibility Index (LP1) System, and the correlation values were computed between the factors measured and Landslide Possibility Index values. The fractures counted by satellite image were categorised according to their length and zones based on their concentrations. It was found that plain sliding and rockfall are the main modes of failure in the area, while rolling and toppling are rare. Some remedial measures are proposed to protect the slopes where it is needed,  such as the removal of rock overhangs, unstable blocks and trees, and by supporting the toe of slopes and overhanging parts by retaining walls and erecting well sealed drainage conduits. The results will assist in slope management and land use planning in the area.


2020 ◽  
Author(s):  
Suman Das

<p>Himalayan Terrain is highly susceptible to landslide events triggered by frequent earthquakes and heavy rainfall. In the recent past, cloud burst events are on rising, causing massive loss of life and property, mainly attributed to climate change and extensive anthropogenic activities in the mountain region as experienced in case of 2013 Kedarnath Tragedy. The study aimed to identify the potential landslide hazard zone in Mandakini valley by utilizing different types of data including Survey of India toposheet, geological (lithological and structural) maps, IRS-1D, LISS IV multispectral and PAN satellite sensor data and field observations. Relevant 18 thematic layers pertaining to the causative factors for landslide occurrences, such as slope, aspect, relative relief, lithology, tectonic structures, lineaments, LULC, NDVI, distance to drainage, drainage density and anthropogenic factors like distance to road, have been generated using remote sensing images, field survey, ancillary data and GIS techniques.  A detailed landslide susceptibility map was produced using a logistic regression method with datasets developed in GIS. which has further been categorized into four landslide susceptibility zones from high to very low. Finally, the receiver operating characteristic (ROC) curve was used to evaluate the accuracy of the logistic regression analysis model. ROC curve analysis showing an accuracy of 87.3 % for an independent set of test samples. The result also showed a strong agreement between the distribution of existing landslides and predicted landslide susceptibility zones. Consequently, this study could serve as an effective guide for further land-use planning and for the implementation of development.</p>


Author(s):  
Desire Kubwimana ◽  
Lahsen Ait Brahim ◽  
Abdellah Abdelouafi

As in other hilly and mountainous regions of the world, the hillslopes of Bujumbura are prone to landslides. In this area, landslides impact human lives and infrastructures. Despite the high landslide-induced damages, slope instabilities are less investigated. The aim of this research is to assess the landslide susceptibility using a probabilistic/statistical data modeling approach for predicting the initiation of future landslides. A spatial landslide inventory with their physical characteristics through interpretation of high-resolution optic imageries/aerial photos and intensive fieldwork are carried out. Base on in-depth field knowledge and green literature, let’s select potential landslide conditioning factors. A landslide inventory map with 568 landslides is produced. Out of the total of 568 landslide sites, 50 % of the data taken before the 2000s is used for training and the remaining 50 % (post-2000 events) were used for validation purposes. A landslide susceptibility map with an efficiency of 76 % to predict future slope failures is generated. The main landslides controlling factors in ascendant order are the density of drainage networks, the land use/cover, the lithology, the fault density, the slope angle, the curvature, the elevation, and the slope aspect. The causes of landslides support former regional studies which state that in the region, landslides are related to the geology with the high rapid weathering process in tropical environments, topography, and geodynamics. The susceptibility map will be a powerful decision-making tool for drawing up appropriate development plans in the hillslopes of Bujumbura with high demographic exposure. Such an approach will make it possible to mitigate the socio-economic impacts due to these land instabilities


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Lee Saro ◽  
Jeon Seong Woo ◽  
Oh Kwan-Young ◽  
Lee Moung-Jin

AbstractThe aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs) followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS). These factors were analysed using artificial neural network (ANN) and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50%) and a test set (50%). A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10%) was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%). Of the weights used in the artificial neural network model, ‘slope’ yielded the highest weight value (1.330), and ‘aspect’ yielded the lowest value (1.000). This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.


2021 ◽  
Vol 16 (4) ◽  
pp. 529-538
Author(s):  
Thi Thanh Thuy Le ◽  
The Viet Tran ◽  
Viet Hung Hoang ◽  
Van Truong Bui ◽  
Thi Kien Trinh Bui ◽  
...  

Landslides are considered one of the most serious problems in the mountainous regions of the northern part of Vietnam due to the special topographic and geological conditions associated with the occurrence of tropical storms, steep slopes on hillsides, and human activities. This study initially identified areas susceptible to landslides in Ta Van Commune, Sapa District, Lao Cai Region using Analytical Hierarchy Analysis. Ten triggering and conditioning parameters were analyzed: elevation, slope, aspect, lithology, valley depth, relief amplitude, distance to roads, distance to faults, land use, and precipitation. The consistency index (CI) was 0.0995, indicating that no inconsistency in the decision-making process was detected during computation. The consistency ratio (CR) was computed for all factors and their classes were less than 0.1. The landslide susceptibility index (LSI) was computed and reclassified into five categories: very low, low, moderate, high, and very high. Approximately 9.9% of the whole area would be prone to landslide occurrence when the LSI value indicated at very high and high landslide susceptibility. The area under curve (AUC) of 0.75 illustrated that the used model provided good results for landslide susceptibility mapping in the study area. The results revealed that the predicted susceptibility levels were in good agreement with past landslides. The output also illustrated a gradual decrease in the density of landslide from the very high to the very low susceptible regions, which showed a considerable separation in the density values. Among the five classes, the highest landslide density of 0.01274 belonged to the very high susceptibility zone, followed by 0.00272 for the high susceptibility zone. The landslide susceptibility map presented in this paper would help local authorities adequately plan their landslide management process, especially in the very high and high susceptible zones.


Sign in / Sign up

Export Citation Format

Share Document