scholarly journals Elevation Effect in Urban Water Distribution Model

2018 ◽  
Vol 153 ◽  
pp. 09001
Author(s):  
Rangsan Wannapop ◽  
Thira Jearsiripongkul ◽  
Krit Jiamjiroch

Metropolitan Waterworks Authority (MWA) is Thailand's national government agency responsible for the supply of water to 3 provinces Bangkok, Nonthaburi and Samut Prakan with more than 2,384.9 km2 of service area and 2,281,058 consumers in the year 2016. Bangkok, which is both the capital and the economic center of the country, is densely populated. Consequently, there is a huge demand for water; MWA has to supply 5.914 million cubic meters of water per day. Because the metropolitan water supply area is a densely populated city, the water supply system is very complex like a spider’s web. For this reason, MWA has adopted EPANET software for its water supply managing tool in the main pipeline system. There are some mistakes in the main pipe network; the elevations of the nodes are not assigned, so there are some errors. In this study, we have assigned elevations for all nodes on the pipeline network based on mean sea level (MSL). After adjusting the elevation of each node, it was found that the new pipeline network has increased the correlation between means to 0.893 from the existing model mean of that is 0.803 of accuracy up 0.09 (11.2%).

2020 ◽  
Vol 20 (6) ◽  
pp. 369-377
Author(s):  
Gunhui Chung ◽  
Won Soo Ohk

Due to urban overcrowding, the population density of residential areas and water use per unit are increasing. Therefore, it is necessary to study the flow of water supplied to cities and to improve the healthy circulation of urban water. This study used Modelica, a non-causal analytical program. Using Open Modelica, the researchers constructed a model linking water distribution and sewerage, as the basis of a balanced urban water model. Using the programmer's toolkit provided by EPA-NET and EPA-SWMM, which are commonly used to simulate the existing water supply and sewage pipe networks, Open Modelica-based water distribution networks and sewage pipe networks can be connected and simulated based on the customer block. A model was built so that 90% of the hourly water consumption supplied to the water supply pipe network can be automatically introduced into the sewage pipe network. If a matching table is constructed to connect the nodes of the water supply pipe network and the sewer pipe network, the nodes will reflect in the graphical user interface (GUI) developed in Open Modelica. It was developed to enable modification of links, pumps, tanks, and valves. The 48-hour water supply was simulated using the developed model, and it was confirmed that water supply and sewage networks were successfully connected. In the future, we plan to develop a more expanded and realistic urban water circulation model by considering additional urban water circulation factors, such as sewage treatment, water reuse, rainwater use, storm runoff, and low-impact development facilities. Through this study, it was confirmed that Modelica can simulate changes in the system over time. Since it is a formula-based non-causal simulation language, it is possible to establish and reuse relationships between blocks through block-by-block development of urban water circulation elements. It is expected to contribute to the visualization and concretization of future urban water circulation models.


Author(s):  
Mukund M. Pawar ◽  
Nitin P. Sonaje

Water is all-natural driving force. Entire world struggles to preserve it. Given that India is among the top 12 water poor countries, water wastage is a critical issue for us. India's population is increasing day by day and thus the demand for water is continuously increasing. This growing demand can be met through an efficient water distribution network which can be designed using modern hydraulic software such as Water GEMS. Using the Water GEMS software Pandharpur city is selected to convert existing water supply system into 24 * 7 continuous water supply systems. The largest investment is the pipes used in the water distribution system. The design, modeling and optimization of pipes in water supply system from an economic point of view are very important. Therefore optimal pipe network design for converting existing network into 24x7 water supply system networks is carried out in this paper to reduce the cost using WaterGEM software. Study of the existing water supply network system for one zone (Ambika Nagar Zone10) is initially carried out from the Pandharpur area. The effect on demand, head loss gradient, and pressure development of the forecasted population is studied. In addition, cost optimization of the pipe network for the proposed 24x7 water supply system is carried out using a genetic algorithms Darwin optimization approach.


2017 ◽  
Vol 37 (1) ◽  
pp. 58 ◽  
Author(s):  
Jure Margeta ◽  
Bojan Đurin

Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV) energy in urban water supply system (UWSS). Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES). The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.


2013 ◽  
Vol 438-439 ◽  
pp. 1551-1554
Author(s):  
Shuang Hua He

Conventional demand-driven models of water supply system are formulated under the assumption that nodal demands are statistic constants, which is not suitable for the cases where nodal pressure is not sufficient for supplying the required demand. An efficient approach for pressure-dependent demand analysis was developed to simulate the hydraulic states of the network for low pressure scenarios, and the mean-first-order-second-moment method was introduced to do the functional reliability analysis of post-earthquake water supply system, which can be applied to further study for seismic performance control analysis of water distribution system.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 154
Author(s):  
Dionysios Nikolopoulos ◽  
Panagiotis Kossieris ◽  
Ioannis Tsoukalas ◽  
Christos Makropoulos

Optimizing the design and operation of an Urban Water System (UWS) faces significant challenges over its lifespan to account for the uncertainties of important stressors that arise from population growth rates, climate change factors, or shifting demand patterns. The analysis of a UWS’s performance across interdependent subsystems benefits from a multi-model approach where different designs are tested against a variety of metrics and in different times scales for each subsystem. In this work, we present a stress-testing framework for UWSs that assesses the system’s resilience, i.e., the degree to which a UWS continues to perform under progressively increasing disturbance (deviation from normal operating conditions). The framework is underpinned by a modeling chain that covers the entire water cycle, in a source-to-tap manner, coupling a water resources management model, a hydraulic water distribution model, and a water demand generation model. An additional stochastic simulation module enables the representation and modeling of uncertainty throughout the water cycle. We demonstrate the framework by “stress-testing” a synthetic UWS case study with an ensemble of scenarios whose parameters are stochastically changing within the UWS simulation timeframe and quantify the uncertainty in the estimation of the system’s resilience.


Sign in / Sign up

Export Citation Format

Share Document