sewage pipe
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 11)

H-INDEX

2
(FIVE YEARS 1)

Author(s):  
Xin Li ◽  
Jian Huang ◽  
Chunwei Li ◽  
Ning Luo ◽  
Wen Lei ◽  
...  

With considering sewage pipe network upgrading projects in the “villages” in cities, the optimization of construction resources and the assessment of delay risks could be achieved. Based on the schedule-cost hypothetical theory, the mathematical model with constraint indicators was established to obtain the expression of optimal resource input, and conclude the method to analyze the schedule uncertainties. The analysis showed that cyclical footage of pipe could be regarded as a relatively fixed value, and the cost can be regarded as a function that depending on the number of working teams. The optimal number of teams and the optimal schedule occurred when the minimum total cost achieved. In the case of insufficient meteorological data, the Monte Carlo simulation method and uncertainty analysis method can be applied to assess the impact of rainfall on the total construction period, correspondingly the probability of such risk could be derived. The calculation showed that the risk of overdue completion varied significantly according to the construction starting time. It was necessary to take rainfall risk into consideration and make corresponding strategies and measures.


2021 ◽  
Vol 30 (1) ◽  
pp. 25-29
Author(s):  
Buem-Keun Park ◽  
Jeong-Hee Shin ◽  
Jong-Hoo Paik ◽  
Young-Jin LEE
Keyword(s):  

2020 ◽  
Vol 20 (6) ◽  
pp. 369-377
Author(s):  
Gunhui Chung ◽  
Won Soo Ohk

Due to urban overcrowding, the population density of residential areas and water use per unit are increasing. Therefore, it is necessary to study the flow of water supplied to cities and to improve the healthy circulation of urban water. This study used Modelica, a non-causal analytical program. Using Open Modelica, the researchers constructed a model linking water distribution and sewerage, as the basis of a balanced urban water model. Using the programmer's toolkit provided by EPA-NET and EPA-SWMM, which are commonly used to simulate the existing water supply and sewage pipe networks, Open Modelica-based water distribution networks and sewage pipe networks can be connected and simulated based on the customer block. A model was built so that 90% of the hourly water consumption supplied to the water supply pipe network can be automatically introduced into the sewage pipe network. If a matching table is constructed to connect the nodes of the water supply pipe network and the sewer pipe network, the nodes will reflect in the graphical user interface (GUI) developed in Open Modelica. It was developed to enable modification of links, pumps, tanks, and valves. The 48-hour water supply was simulated using the developed model, and it was confirmed that water supply and sewage networks were successfully connected. In the future, we plan to develop a more expanded and realistic urban water circulation model by considering additional urban water circulation factors, such as sewage treatment, water reuse, rainwater use, storm runoff, and low-impact development facilities. Through this study, it was confirmed that Modelica can simulate changes in the system over time. Since it is a formula-based non-causal simulation language, it is possible to establish and reuse relationships between blocks through block-by-block development of urban water circulation elements. It is expected to contribute to the visualization and concretization of future urban water circulation models.


Author(s):  
Jun Yuan ◽  
Zongqiu Chen ◽  
Chenghua Gong ◽  
Hui Liu ◽  
Baisheng Li ◽  
...  

Abstract Background SARS-CoV-2 has been identified in the fecal matter of COVID-19 patients. However, sewage transmission has never been shown. In April 2020, a COVID-19 outbreak occurred in a densely populated community in Guangzhou, China. We investigated this outbreak to identify the mode of transmission. Method A home quarantined order was issued in the community. We collected throat swab samples from the residents and environmental samples from the surfaces inside and around the houses, and conducted RT-PCR testing and genome sequencing. We defined a case as a resident in this community with a positive RT-PCR test, with or without symptoms. We conducted a retrospective cohort study of all residents living in the same buildings as the cases to identify exposure risk factors. Result We found eight cases (four couples) in this community of 2888 residents (attack rate=2.8/1000), with onset during April 5–21, 2020. During their incubation periods, Cases 1-2 frequented market T with an ongoing outbreak. Cases 3-8 never visited market T during incubation period, lived in separate buildings from, and never interacted with, Cases 1-2. Retrospective cohort study showed that working as cleaners or waste picker (RR=13, 95% CIexact: 2.3-180), not changing to clean shoes after returning home (RR=7.4, 95% CIexact: 1.8-34), collating and cleaning dirty shoes after returning home (RR=6.3, 95% CIexact: 1.4-30) were significant exposure risk factors. Of 63 samples collected from street-sewage puddles and sewage-pipe surfaces, 19% tested positive for SARS-CoV-2. Of 50 environmental samples taken from cases’ apartments, 24% tested positive. Viral genome sequencing showed that the viruses identified from the squat toilet and shoe-bottom dirt inside the apartment of Cases 1-2 were homologous with those from Cases 3-8 and those identified from sewage samples. The sewage pipe leading from the apartment of Cases 1-2 to the drainage had a large hole above ground. Rainfalls after the onset of Cases 1-2 flooded the streets. Conclusion Our investigation has for the first time pointed to the possibility that SARS-CoV-2 might spread by sewage. This finding highlighted the importance of sewage management, especially in densely-populated places with poor hygiene and sanitation measures, such as urban slums and other low-income communities in developing countries.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4238
Author(s):  
Jeongjun Park ◽  
Gigwon Hong

In this study, the effects of the mixing conditions of waste paper sludge ash (WPSA) on the strength and bearing capacity of controlled low-strength material (CLSM) were evaluated, and the optimal mixing conditions were used to evaluate the strength characteristics of CLSM with recyclable WPSA. The strength and bearing capacity of CLSM with WPSA were evaluated using unconfined compressive strength tests and plate bearing tests, respectively. The unconfined compressive strength test results show that the optimal mixing conditions for securing 0.8–1.2 MPa of target strength under 5% of cement content conditions can be obtained when both WPSA and fly ash are used. This is because WPSA and fly ash, which act as binders, have a significant impact on overall strength when the cement content is low. The bearing capacity of weathered soil increased from 550 to 575 kPa over time, and CLSM with WPSA increased significantly, from 560 to 730 kPa. This means that the bearing capacity of CLSM with WPSA was 2.0% higher than that of weathered soil immediately after construction; furthermore, it was 27% higher at 60 days of age. In addition, the allowable bearing capacity of CLSM corresponding to the optimal mixing conditions was evaluated, and it was found that this value increased by 30.4% until 60 days of age. This increase rate was 6.7 times larger than that of weathered soil (4.5%). Therefore, based on the allowable bearing capacity calculation results, CLSM with WPSA was applied as a sewage pipe backfill material. It was found that CLSM with WPSA performed better as backfill and was more stable than soil immediately after construction. The results of this study confirm that CLSM with WPSA can be utilized as sewage pipe backfill material.


Geothermics ◽  
2020 ◽  
Vol 86 ◽  
pp. 101796 ◽  
Author(s):  
Connor Dacquay ◽  
Hartmut M. Holländer ◽  
Miroslava Kavgic ◽  
Pooneh Maghoul ◽  
Hongwei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document