scholarly journals The Influence of Surface Treatment of PVD Coating on Its Quality and Wear Resistant

Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 439 ◽  
Author(s):  
Tomas Zlamal ◽  
Ivan Mrkvica ◽  
Tomas Szotkowski ◽  
Sarka Malotova

The article deals with a determination of the influence of a cutting edge preparation on the quality and wear resistance of coated cutting tools. Cutting inserts made from a sintered carbide with a deposited layer of PVD coating were selected for measurement. Non-homogeneity caused by the creation of droplets arises in the application layer during the process of applying the coating by the PVD method. These droplets make the surface roughness of the PVD coating worse, increase the friction and thereby the thermal load of the cutting tool as well. Also, the droplets could be the cause of the creation and propagation of droplets in the coating and they can cause quick cutting tool wear during machining. Cutting edge preparations were suggested for the improvement of the surface integrity of deposited layers of PVD coating, namely the technology of drag finishing and abrasive jet machining. After their application, the areal surface roughness was measured on the surface of coated cutting inserts, the occurrence of droplets was tracked and the surface structure was explored. A tool-life test of cutting inserts was carried out for verification of the influence of surface treatment on the wear resistance of cutting inserts during the milling process. The cutting inserts with a layer of PVD coatings termed as samples A, B, and C were used for the tool-life test. The first sample, A, represented the coating before the application of cutting edge preparations and samples B and C were after the application of the cutting edge preparation. A carbon steel termed C45 was used for the milling process and cutting conditions were suggested. The visual control of surface of cutting inserts, intensity of wear and occurrence of thermal cracks in deposited PVD layers were the criterion for the evaluation of the individual tests.

2009 ◽  
Vol 76-78 ◽  
pp. 597-602 ◽  
Author(s):  
Berend Denkena ◽  
Luis de Leon ◽  
Jens Köhler

After the grinding process, the cutting edges of cemented carbide milling tools tend to chipping. Chipping has a strong influence on the tool performance. For this reason, the cutting edges are further prepared. Additionally, a cutting edge rounding has an impact on the wear behavior and the process stability. For the cutting edge preparation of milling tools, magnetic finishing is a promising process. This paper describes the process of magnetic finishing. The influencing parameters, i.e. the process time and the distance between the cutting tool and the magnetic disks, are investigated. Furthermore, the effect of magnetic finishing on the tool life is demonstrated using the example of a milling process with titanium.


2015 ◽  
Vol 105 (11-12) ◽  
pp. 805-811
Author(s):  
E. Uhlmann ◽  
D. Oberschmidt ◽  
A. Löwenstein ◽  
M. Polte ◽  
I. Winker

Die Prozesssicherheit beim Mikrofräsen lässt sich mit einer gezielten Schneidkantenverrundung erheblich steigern. Dabei werden durch verschiedene Präparationstechnologien unterschiedliche Geometrien und Einflüsse auf den Fräsprozess erzeugt. Der Fachbeitrag behandelt den Einsatz präparierter Mikrowerkzeuge in Zerspanversuchen, in denen auf die Zerspankräfte, den Verschleiß sowie die Oberflächengüten eingegangen wird.   Process reliability in micro milling can be increased by a defined cutting edge preparation. Different cutting edge preparations cause different effects on tool behavior in the downstream micro milling process. In this paper, the process forces, the tool wear and the surface quality of prepared micro milling tools are characterized in cutting tests.


2018 ◽  
Vol 178 ◽  
pp. 01014
Author(s):  
Ioan-Doru Voina ◽  
Stefan Sattel ◽  
Glad Contiu ◽  
Adrian Faur ◽  
Bogdan Luca

The improvement of the microgeometry became a subject of a great interest in cutting tools optimization. This paper approaches the process of cutting edge preparation of solid carbide reamers. It has been analyzed the evolution of cutting edge wear resistance in the material GGG 40 using the scanning electron microscope (SEM). The work also compared the rounded cutting edge reamers realized using wet abrasive jet machining with standard unprepared cutting edge. To obtain different microgeometries were experienced a number of machining strategies, which resulted in four combinations of roundness and forms for the cutting edge. In order to validate the results, the author studied the wear resistance during the reaming tests, the influence of prepared surface of the cutting edge on metallic coating layer adhesion. The final purpose was to determinate the optimal strategy of cutting edge preparation considering the evolution of wear during the reaming process.


2021 ◽  
Author(s):  
Dejin Lv ◽  
Yongguo Wang ◽  
Xin Yu ◽  
Han Chen ◽  
Yuan Gao

Abstract Cutting edge preparation has become more important for tool performance. The micro-shape, radius and surface topography of the cutting edge plays a significant role in the machining process. The cutting edge of solid carbide end mills have some micro-defects after grinding. For eliminating aforementioned problem, this study investigates drag finishing (DF) preparation for solid carbide end mills reconstruct cutting edge micro-geometry. This paper is to present the design of DF experimental set-up and analysis the characterization of various abrasive media (K3/600, K3/400, HSC 1/300 and HSO 1/100) on the evolution of the surface /roughness along the cutting edge. In parallel, the mechanism of material removal and the kinematics trajectory of the drag finishing are presented. In fact, the form factor (also called as “K-factor”) of the cutting edge micro-geometry is quantified. Comparing with four lapping media, the higher material removal rate (MRR) and the lower surface roughness are obtained by HSO 1/100 abrasive process. The results show that the cutting edge K-factor, MRR and surface topography are influenced by the abrasive particles size, composition and process time. The cutting edge micro-geometry is measured through Scanning Electron Microscopy (SEM) and 3D Optical measuring instrument.


Author(s):  
Tomáš ZLÁMAL ◽  
Šárka MALOTOVÁ ◽  
Tomáš SZOTKOWSKI ◽  
Ondřej VORTEL ◽  
Antonín TREFIL

2010 ◽  
Vol 438 ◽  
pp. 1-7 ◽  
Author(s):  
Berend Denkena ◽  
Luis de Leon ◽  
E. Bassett ◽  
M. Rehe

The need for new cutting tool technologies is driven by the constantly increasing performance of machine tools and the rising market competition. Current research results show that an improved combination of the cutting edge macro- and microgeometry, together with an appropriate substrate and coating, leads to a significant enhancement of cutting tool performance. Furthermore, inappropriate cutting edge microgeometries cause, in addition to the higher production costs, a reduction of the tool life. Hence, it is essential to produce tailored cutting edge microgeometries with high precision and process reliability. This paper presents the influence of brushing process parameters on the size and the form of produced cutting edges of indexable inserts. This leads to a better understanding and higher quality of the cutting edge preparation process by means of abrasive brushes. Furthermore, the process reliability of 5-axes brushing is analyzed. An example of a tool life map presents the significantly enhanced tool performance through cutting edge preparation and its sensitivity towards varying the cutting edge microgeometry.


2017 ◽  
Vol 107 (06) ◽  
pp. 453-460
Author(s):  
E. Prof. Uhlmann ◽  
J. Bruckhoff

Angesichts steigender Anforderungen an Zerspanwerkzeuge nimmt die Schneidkantenpräparation einen immer größer werdenden Stellenwert ein, da sich so die Standzeit von Zerspanwerkzeugen erhöhen lässt. Die bisher eingesetzten Präparationsverfahren eignen sich meist nur für einfache Verrundungen an der Schneidkante. In umfangreichen Untersuchungen wurde die Eignung von Formschleifprozessen zur Herstellung definierter Schneidkantenmikrogeometrien anhand von Arbeitsergebnissen analysiert.   Due to increasing demands on cutting tools cutting edge preparation has a high priority because it influences the tool life. Current cutting edge preparation processes can only generate simple roundings on the cutting edge. By extensive investigations the suitability of form grinding processes for the production of defined microgeometries on the cutting edge was analysed.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4836-4840
Author(s):  
ROBERT STRAKA ◽  
◽  
JOZEF PETERKA ◽  
TOMAS VOPAT ◽  
◽  
...  

The article compares two cutting edge preparation methods and their influence on the machined surface roughness of the difficult to cut nickel alloy Inconel 718 and the tool wear of cutting inserts made of cemented carbide. The manufacturing and preparation process of cutting inserts used in the experiment were made by Dormer Pramet. The preparation methods used in the experiment were drag finishing and brushing. Cutting parameters did not change during the whole turning process to maintain the same conditions in each step of the process and were determined based on tests for a semi-finishing operation of the turning process. To obtain durability of 25 to 30 minutes with controlled development of the tool wear the cutting parameters were determined with cooperation with the cutting inserts manufacturer.


Sign in / Sign up

Export Citation Format

Share Document