scholarly journals Concrete columns confined with different composite materials

2018 ◽  
Vol 199 ◽  
pp. 09012 ◽  
Author(s):  
Jacopo Donnini ◽  
Valeria Corinaldesi

In the last decades, the need for upgrading, strengthening and retrofitting of existing concrete structures is rapidly growing. Composite materials showed to be an optimal solution to face this problem, combining high efficacy with low invasiveness. The use of Fiber Reinforced Polymers (FRP) to wrap concrete columns has been widely investigated and became a very successful method to improve their structural performances. However, it has been recognized that FRPs, due to the presence of an organic resin, have a few drawbacks, such as poor mechanical behavior at high temperatures, lack of vapor permeability and impossibility to be installed on wet surfaces. This experimental work aims to propose a comparison between three different innovative methods as possible strengthening solutions for existing concrete columns. The structural behavior of 20 reduced scale concrete columns, realized by using a low performance concrete, in order to reproduce the poor mechanical properties of existing structures, was investigated. Two unreinforced column were tested in compression as reference. Six of them where reinforced by applying an external layer of FRP, with different types of fabric reinforcement (made of carbon or PBO fibers). Six columns were reinforced by using the same fabrics coupled with an inorganic matrix (FRCM) instead of epoxy. Six other columns were reinforced by using a layer of High Performance Fiber Reinforced Concrete (HPFRC) of 3 cm thick. Experimental results have been analyzed and performance of the three reinforcement systems have been compared.

2021 ◽  
Vol 28 (2) ◽  
pp. 54-72
Author(s):  
Abd-al-Salam Al-Hazragi ◽  
Assim Lateef

This article investigates the behaviour of strengthened concrete columns using jacketing ultra-high-performance fiber reinforced concrete (UHPFRC) and carbon fiber-reinforced polymer (CFRP) under uniaxial loaded. The jacket was connected to the column core using shear connectors and (CFRP) fixed as a strip on the tension zone between the column cores and the jacketing. Seven column samples of square cross-section (120 x120) mm at the midsection with overall length of 1250 mm were cast using normal strength concrete (NSC) and having similar longitudinal and transverse reinforcement. The samples were made and tested under axial load at eccentricity equal to 120 mm up to failure. Test parameters were the thickness of jackets (25 and 35) mm and the width of CFRP (0,8, and 12) cm. Column specimens were tested, one of them was reference without any strengthening, and the other specimens divided into two groups (A, and B), and each group included three specimens based on the parameters. Group (A) has UHPFRC jacket thickness 25 mm and CFRP width (0,8, and 12) cm respectively, and group (B) has UHPFRC jacket thickness 35 mm and CFRP width (0,8, and 12) cm respectively. The outcomes of the article show that increasing the thickness of jacket, and width of CFRP lead to increase in the load carrying capacity about (110.5%,168.4%, and 184.2%) for group A, and (157.9%,226.3%, and 263.2%) for group B compared with the reference column due to delay in the appearance of cracks and their distribution. The mid-height lateral displacement of columns was decreased about (66.6%,42.3%, and 35.9%) for group A, and (46.15%,38.46%, and 32.3%) for group B, also the axial deformation of specimens decreased about (71.7%,60.86%, and 55.86%) for group A, and (65.5%,60.5%, and 53.4) for group B compared with the reference column. The ductility of columns that were strengthened with UHPFRC jacket only was increased about (13.67%,19.66%) for thickness(25,35) mm respectively, because of that UHPFRC jacket was contented on steel fibers, and the percentage decrease of ductility was about (5.1%,and 12%) for group (A), (1%,and 9.4%) for group (B) when bonded CFRP in the tension zone with width (8 ,and 12) cm respectively. The results show improvement in the initial and secant stiffness when, increased the thickness of jacket, and width of CFRP because of increase in the size of columns and improvement in the modulus of elasticity. The toughness increase was about (273.97%,301.55%, and 304.5%) for group A, and (453.69%,511.93%, and 524.28%) for group B compared with the reference column because of increase in the size of specimens and delay the appearance of cracks.


2021 ◽  
Vol 28 (2) ◽  
pp. 54-72
Author(s):  
Abd-al-Salam Al-Hazragi ◽  
Assim Lateef

This article investigates the behaviour of strengthened concrete columns using jacketing ultra-high-performance fiber reinforced concrete (UHPFRC) and carbon fiber-reinforced polymer (CFRP) under uniaxial loaded. The jacket was connected to the column core using shear connectors and (CFRP) fixed as a strip on the tension zone between the column cores and the jacketing. Seven column samples of square cross-section (120 x120) mm at the midsection with overall length of 1250 mm were cast using normal strength concrete (NSC) and having similar longitudinal and transverse reinforcement. The samples were made and tested under axial load at eccentricity equal to 120 mm up to failure. Test parameters were the thickness of jackets (25 and 35) mm and the width of CFRP (0,8, and 12) cm. Column specimens were tested, one of them was reference without any strengthening, and the other specimens divided into two groups (A, and B), and each group included three specimens based on the parameters. Group (A) has UHPFRC jacket thickness 25 mm and CFRP width (0,8, and 12) cm respectively, and group (B) has UHPFRC jacket thickness 35 mm and CFRP width (0,8, and 12) cm respectively. The outcomes of the article show that increasing the thickness of jacket, and width of CFRP lead to increase in the load carrying capacity about (110.5%,168.4%, and 184.2%) for group A, and (157.9%,226.3%, and 263.2%) for group B compared with the reference column due to delay in the appearance of cracks and their distribution. The mid-height lateral displacement of columns was decreased about (66.6%,42.3%, and 35.9%) for group A, and (46.15%,38.46%, and 32.3%) for group B, also the axial deformation of specimens decreased about (71.7%,60.86%, and 55.86%) for group A, and (65.5%,60.5%, and 53.4) for group B compared with the reference column. The ductility of columns that were strengthened with UHPFRC jacket only was increased about (13.67%,19.66%) for thickness(25,35) mm respectively, because of that UHPFRC jacket was contented on steel fibers, and the percentage decrease of ductility was about (5.1%,and 12%) for group (A), (1%,and 9.4%) for group (B) when bonded CFRP in the tension zone with width (8 ,and 12) cm respectively. The results show improvement in the initial and secant stiffness when, increased the thickness of jacket, and width of CFRP because of increase in the size of columns and improvement in the modulus of elasticity. The toughness increase was about (273.97%,301.55%, and 304.5%) for group A, and (453.69%,511.93%, and 524.28%) for group B compared with the reference column because of increase in the size of specimens and delay the appearance of cracks.


2021 ◽  
pp. 096739112110206
Author(s):  
A Tamer Erturk ◽  
Eser Yarar ◽  
Fahri Vatansever ◽  
Alp Eren Sahin ◽  
Mert Kilinçel ◽  
...  

Fiber-reinforced plastics are known as advanced composite materials thanks to their high strength and lightweight features. Carbon fiber reinforced polymers (CFRPs) are one of the high-performance and high-cost fiber-reinforced polymer (FRPs) materials. They are used in several high-performance engineering applications such as motorsports, marine, aviation, energy and defense industry. The cost of carbon fiber is higher compared to many other materials, more competitive and cost-effective productions will spur the demand for composite parts exponentially. Thus, hybrid laminate composite containing carbon and glass fiber materials were manufactured as an alternative for CFRP materials. Because using glass fiber prepreg instead of carbon fiber prepreg will lead the material to become cheaper. However, machining of the FRP materials is still an important issue. For this reason, the present study is focused on the mechanical and machining performance of the polymer hybrid and carbon fiber epoxy composites.


Author(s):  
Varun Garg ◽  
Prem Pal Bansal ◽  
Raju Sharma

Shear deficient structures have been strengthened or repaired by using various methods, e.g., external pre-stressing, shotcreting, steel plate bonding, polymer impregnation, fiber reinforced polymers (FRPs). But there were problems with each of the above techniques as the use of FRP gives sudden failure due to de-bonding, steel plates got corroded after some time and several losses in the case of external pre-stressing. To overcome all the above problems faced in different retrofitting techniques, a new cementitious material with ultra high performance characteristics like very high compressive strength (above 110 MPa), high tensile and flexural strength due to the addition of fibers, very less permeable and high workability i.e. UHP-FRC came into existence. In the present study, shear deficient RC beams initially stressed to a prefixed percentage, i.e. 60% of the ultimate failure load are retrofitted using UHP-FRC. Retrofitting is done using side face retrofitting. From the study it is seen that the ultimate load carrying capacity of RC beams retrofitted with UHP-FRC is significantly increased with side face retrofitting. Moreover, this technique also increased the ductility and energy absorption of RC beams which resulted in the usefulness of UHPFRC as a retrofitted material.


Sign in / Sign up

Export Citation Format

Share Document