scholarly journals Theoretical Analysis on the Impact of Total Damping Ratio on the Power Output of an Electromagnetic Vibration Energy Harvester

2018 ◽  
Vol 202 ◽  
pp. 02002
Author(s):  
Faruq Muhammad Foong ◽  
Chung Ket Thein ◽  
Beng Lee Ooi

Vibration energy harvesting has emerged as a promising source of sustainable energy to power small electronics. This study investigates the effect of total damping on the power output of an electromagnetic vibration energy harvester. Analytical results show that an increase in the effective mass of the harvester increases the mechanical damping but decreases the electromagnetic damping. The total damping of the harvester displayed an increasing trend with the effective mass when the electromagnetic damping is lower that the mechanical damping but changed into a decreasing trend when the electromagnetic damping becomes larger than the mechanical damping. Findings also suggest that there is an optimum proof mass to beam mass ratio where the harvester would produce maximum power in both cases of where a constant and varying optimum load resistance were considered.

Author(s):  
Xiudong Tang ◽  
Lei Zuo

A type of dual-mass vibration energy harvester, where two masses are connected in series with the energy transducer and spring, is proposed and analyzed in this paper. The dual-mass vibration energy harvester is proved to be able to harvest more energy than the traditional single degree-of-freedom (DOF) one when subjected to harmonic force or base displacement excitation. The optimal parameters for maximizing the power output in both the traditional and the new configurations are discussed with taking the parasitic mechanical damping of the system into account. In consistent of the previous literature, we find that the optimal condition for maximum power output of the single DOF vibration energy harvester is when the excitation frequency equals to the natural frequency of the mechanical system and the electrical damping due to the energy harvesting circuit is the same as the mechanical damping. However, the optimal conditions are quite different for the dual-mass vibration energy harvester. It is found that two local optimums exist, where the optimal excitation frequency and electrical damping are analytically obtained. The local maximum power of the dual-mass vibration energy harvester is larger than the global maximum power of single DOF one. Moreover, at certain frequency range between the two natural frequencies of the dual-mass system, the harvesting power always increases with the electrical damping ratio. This suggests that we can obtain higher energy harvesting rate using dual-mass harvester. The sensitivity of the power to parameters, such as mass ratio and tuning ratio, is also investigated.


2022 ◽  
Vol 253 ◽  
pp. 115146
Author(s):  
Yifeng Wang ◽  
Peigen Wang ◽  
Shoutai Li ◽  
Mingyuan Gao ◽  
Huajiang Ouyang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2410 ◽  
Author(s):  
Bei Zhang ◽  
Qichang Zhang ◽  
Wei Wang ◽  
Jianxin Han ◽  
Xiaoli Tang ◽  
...  

A novel bistable electromagnetic vibration energy harvester (BEMH) is constructed and optimized in this study, based on a nonlinear system consisting mainly of a flexible membrane and a magnetic spring. A large-amplitude transverse vibration equation of the system is established with the general nonlinear geometry and magnetic force. Firstly, the mathematical model, considering the higher-order nonlinearities given by nonlinear Galerkin method, is applied to a membrane with a co-axial magnet mass and magnetic spring. Secondly, the steady vibration response of the membrane subjected to a harmonic base motion is obtained, and then the output power considering electromagnetic effect is analytically derived. On this basis, a parametric study in a broad frequency domain has been achieved for the BEMH with different radius ratios and membrane thicknesses. It is demonstrated that model predictions are both in close agreement with results from the finite element simulation and experiment data. Finally, the proposed efficient solution method is used to obtain an optimizing strategy for the design of multi-stable energy harvesters with the similar flexible structure.


Sign in / Sign up

Export Citation Format

Share Document