scholarly journals Modeling and simulation for low-frequency vibration energy harvesting based on piezoelectric unimorph cantilever beam

2018 ◽  
Vol 208 ◽  
pp. 04003
Author(s):  
Binjie Song ◽  
Jianhai Yue ◽  
Zhunqing Hu

In order to solve the problem of sustainable energy supply for low-power electronic products used in low-frequency vibration environment, the mathematic model was established based on the theory of piezoelectricity and Euler-Bernoulli beam. Also, the effects of different parameters of PZT unimorph beams such as the length, width, and tip mass on generating capacity were studied by FEM. The results show that the energy harvester with PZT unimorph beam and tip mass is suitable for low-frequency vibration environment. Increasing the length or reducing the width of the beam can significantly lower the first-order modal frequency of energy harvester when other conditions remain the same. Within certain range, the first-order modal frequency of the beam also gradually reduced as the tip mass increasing. When the size of the PZT unimorph beam is 60x60x0.33mm, the tip mass is 8.92g and an exciting force of 0.01N is applied to it along z axis, an output of 8.1V can be obtained. Meanwhile, the PZT unimorph beam is under the first vibration mode and the resonant frequency is 16.296Hz.

2014 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Daniel J. Apo ◽  
Mohan Sanghadasa ◽  
Shashank Priya

AbstractCantilever beams are widely used for designing transducers for low-frequency vibration energy harvesting. However, in order to keep the dimensions within reasonable constraints, a large tip mass is generally required for reducing the resonance frequency below 100 Hz which has adverse effect on the reliability. This study provides a breakthrough toward realizing low-frequency micro-scale transduction structures. An analytical out-of-plane vibration model for standalone arc-based cantilever beams was developed that includes provisions for shear and rotary inertia, multidirectional arcs, and multiple layers. The model was applied to a multilayered cantilever beam (10-mm wide and 0.1-mm thick) composed of three arcs, and the results indicate that the fundamental bending mode of the beam was 38 Hz for a silicon substrate thickness of 100 μm. The model was validated with modal experimental results from an arc-based cantilever made out of aluminum.


2013 ◽  
Vol 475-476 ◽  
pp. 1624-1628
Author(s):  
Hasnizah Aris ◽  
David Fitrio ◽  
Jack Singh

The development and utilization of different structural materials, optimization of the cantilever geometry and power harvesting circuit are the most commonly methods used to increase the power density of MEMS energy harvester. This paper discusses the cantilever geometry optimization process of low power and low frequency of bimorph MEMS energy harvester. Three piezoelectric materials, ZnO, AlN and PZT are deposited on top and bottom of the cantilever Si substrate. This study focuses on the optimization of the cantilevers length, width, substrate thickness and PZe thickness in order to achieve lower than 600 Hz of resonant frequency. The harvested power for this work is in the range of 0.02 ~ 194.49 nW.


Author(s):  
Sondipon Adhikari ◽  
Arnab Banerjee

Piezoelectric vibration energy harvesters have demonstrated the potential for sustainable energy generation from diverse ambient sources in the context of low-powered micro-scale systems. However, challenges remain concerning harvesting more power from low-frequency input excitations and broadband random excitations. To address this, here we propose a purely mechanical approach by employing inertial amplifiers with cantilever piezoelectric vibration energy harvesters. The proposed mechanism can achieve inertial amplification amounting to orders of magnitude under certain conditions. Harmonic, as well as broadband random excitations, are considered. Two types of harvesting circuits, namely, without and with an inductor, have been employed. We explicitly demonstrate how different parameters describing the inertial amplifiers should be optimally tuned to maximise harvested power under different types of excitations and circuit configurations. It is possible to harvest five times more power at a 50% lower frequency when the ambient excitation is harmonic. Under random broadband ambient excitations, it is possible to harvest 10 times more power with optimally selected parameters.


2016 ◽  
Vol 28 (5) ◽  
pp. 578-594 ◽  
Author(s):  
Sri Vikram Palagummi ◽  
Fuh-Gwo Yuan

This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation mechanism–based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit. The horizontal diamagnetic levitation mechanism comprises three permanent magnets and two diamagnetic plates. Two of the magnets, lifting magnets, are placed co-axially at a distance such that each attracts a centrally located magnet, floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet, and the diamagnetic plate is parametrically studied to quantify their effects on the size, stability of the levitation mechanism, and the resonant frequency of the floating magnet. For vibration energy harvesting using the horizontal diamagnetic levitation mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a volume figure of merit of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at a frequency of 1.9 Hz.


2014 ◽  
Vol 525 ◽  
pp. 342-345
Author(s):  
Yan Zhao ◽  
Shan Shan Liu ◽  
Yu Feng Li

The piezoelectric power generating device can convert the vibration energy into electrical energy in vehicular environment. So it can provide energy for electronic components. Firstly, the mathematical model of road-vehicles-piezoelectric device coupled vibration was established under the random road excitation. Then vibration simulation analysis of the established model was made. The acceleration and spectrum of the vehicles body and its connection with the suspension were researched under B-class. The car body vibration is low-frequency vibration. Further studies shows that expanding the speed range and changing the roads level almost have no effect on the natural frequency of vehicles body vibration. Secondly, in order to make the maximum generating capacity, the influences of cantilever beam parameters have on its nature frequency were researched. The research results provide basis for parameters design in cantilever beam.


Energy ◽  
2019 ◽  
Vol 180 ◽  
pp. 737-750 ◽  
Author(s):  
Yi Li ◽  
Shengxi Zhou ◽  
Zhichun Yang ◽  
Tong Guo ◽  
Xutao Mei

Sign in / Sign up

Export Citation Format

Share Document