The Structural Properties Research of Piezoelectric Cantilever Beam Based on Vehicular Environment

2014 ◽  
Vol 525 ◽  
pp. 342-345
Author(s):  
Yan Zhao ◽  
Shan Shan Liu ◽  
Yu Feng Li

The piezoelectric power generating device can convert the vibration energy into electrical energy in vehicular environment. So it can provide energy for electronic components. Firstly, the mathematical model of road-vehicles-piezoelectric device coupled vibration was established under the random road excitation. Then vibration simulation analysis of the established model was made. The acceleration and spectrum of the vehicles body and its connection with the suspension were researched under B-class. The car body vibration is low-frequency vibration. Further studies shows that expanding the speed range and changing the roads level almost have no effect on the natural frequency of vehicles body vibration. Secondly, in order to make the maximum generating capacity, the influences of cantilever beam parameters have on its nature frequency were researched. The research results provide basis for parameters design in cantilever beam.

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2770 ◽  
Author(s):  
Iman Izadgoshasb ◽  
Yee Lim ◽  
Ricardo Vasquez Padilla ◽  
Mohammadreza Sedighi ◽  
Jeremy Novak

Harvesting electricity from low frequency vibration sources such as human motions using piezoelectric energy harvesters (PEH) is attracting the attention of many researchers in recent years. The energy harvested can potentially power portable electronic devices as well as some medical devices without the need of an external power source. For this purpose, the piezoelectric patch is often mechanically attached to a cantilever beam, such that the resonance frequency is predominantly governed by the cantilever beam. To increase the power generated from vibration sources with varying frequency, a multiresonant PEH (MRPEH) is often used. In this study, an attempt is made to enhance the performance of MRPEH with the use of a cantilever beam of optimised shape, i.e., a cantilever beam with two triangular branches. The performance is further enhanced through optimising the design of the proposed MRPEH to suit the frequency range of the targeted vibration source. A series of parametric studies were first carried out using finite-element analysis to provide in-depth understanding of the effect of each design parameters on the power output at a low frequency vibration. Selected outcomes were then experimentally verified. An optimised design was finally proposed. The results demonstrate that, with the use of a properly designed MRPEH, broadband energy harvesting is achievable and the efficiency of the PEH system can be significantly increased.


Author(s):  
Liming Zhou ◽  
Yanbo Liu ◽  
Long Ma ◽  
Yue Wu

Motion in nature is usually a low-frequency vibration such as walking, running, swinging arms, and so on, but traditional piezoelectric cantilever structures are inefficient at harvesting energy from low-frequency vibrations. T in the environment. To overcome this, a novel piezoelectric generator was designed. A cantilevered bimorph with a tip mass and a pair of preloading springs were fixed on its base to form a nonlinear piezoelectric generator. The energy transmission in the structure was analyzed. The harvester was modeled as a Euler–Bernoulli beam, and the piezoelectric material was assumed to be linear. The bending vibration was calculated using the Rayleigh–Ritz procedure, and the frequency characteristics of the output voltage were analyzed under different preloading distances. It was found that changing the preloading of the spring helped reduce the natural frequency of the cantilever, which facilitated conversion of ambient low-frequency vibrations into electrical energy. Then, the characteristics of low frequency energy harvesting were investigated experimentally. The theoretical results were consistent with the experimental data; moreover, the resonance frequency, which changes with the preloading distance, reduced from 43 to 35 Hz when the preloading distance was increased from 0 to 1 mm. In this paper, an effective structure to control the resonant frequency is proposed and its motion equation stated. The structure has potential for applications in predicting the effect of preloading distance on resonance frequency.


2006 ◽  
Vol 289 (1-2) ◽  
pp. 192-209 ◽  
Author(s):  
Won-Suk Ohm ◽  
Lixue Wu ◽  
Peter Hanes ◽  
George S.K. Wong

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Hong ◽  
Rui Sun ◽  
Zhongchao Qiu ◽  
Zhiming Han ◽  
Yanan Li

AbstractThe acquisition of 2–50 Hz low-frequency vibration signals is of great significance for the monitoring researches on engineering seismology, bridges & dams, oil & gas exploration, etc. A multi-cantilever beam low-frequency FBG acceleration sensor is proposed against the low sensitivity that predominates in the low-frequency vibration measurement by FBG acceleration sensors. Structural parameters of the sensor is subjected to simulation analysis and optimization design using the ANSYS software; the real sensor is developed based on the simulation results in the following manner: Three rectangular of the cantilever beams are evenly arranged around the mass block at 120°to improve the sensitivity and alleviate the transverse crosstalk of sensor; in the end, a performance test is performed on the sensor. According to the research findings, the sensor, whose natural frequency is approximately 64 Hz, is applicable for monitoring the low-frequency vibration signals within the range 16–54 Hz. The sensor sensitivity is approximately $$87.955\,{\text{pm/m}}\;{\text{s}}^{ - 2}$$ 87.955 pm/m s - 2 , the linearity being greater than 99%, the transverse interference immunity being lower than 2.58%, and the dynamic range being up to 86 dB. The findings offer a reference for developing sensor of the same type and further improving the sensitivity of fiber optic acceleration sensor.


2008 ◽  
Author(s):  
Min Zhang ◽  
Daniel Brignac ◽  
Pratul Ajmera ◽  
Kun Lian

2014 ◽  
Vol 918 ◽  
pp. 106-114 ◽  
Author(s):  
Min Chie Chiu ◽  
Ying Chun Chang ◽  
Long Jyi Yeh ◽  
Chiu Hung Chung ◽  
Chen Hsin Chu

The goal of this paper is to develop and experimentally test portable vibration-based electromagnetic energy harvesters which are fit for extracting low frequency kinetic energy. Based on a previous study on fixed vibration-based electromagnetic energy harvesters, three kinds of portable energy harvesters (prototype I, prototype II, and prototype III) are developed and tested. To obtain the related parameters of the energy harvesters, an experimental platform used to measure the vibrational systems electrical power at the resonant frequency and other fixed frequencies is also established. Based on the research work of vibration theory, a low frequency vibration-arm mechanism (prototype III) which is easily in resonance with a walking tempo is developed. Here, a strong magnet fixed to one side of the vibration-arm along with a set of wires placed along the vibrating path will generate electricity. The circular device has a radius of 180 mm, a width of 50 mm, and weighs 200 grams. Because of its light mass, it is easy to carry and put into a backpack. Experimental results reveal that the energy harvester (prototype III) can easily transform kinetic energy into electrical power via the vibration-based electromagnetic system when walking at a normal speed. Consequently, electrical energy reaching 0.25 W is generated from the energy harvester (prototype III) by extracting kinetic energy produced by walking.


Author(s):  
Jun Wang ◽  
Scott Chang ◽  
Chin An Tan ◽  
Greg Auner

A novel cantilever-beam type MEMS power generator is proposed for the conversion of vibration mechanical energy to electrical energy through piezoelectric effects. In the various MEMS-based micro power generating schemes, piezoelectric conversion usually achieves a higher efficiency than that of electromagnetic or electrostatic schemes. Currently, most cantilever-beam type MEMS power generators are suitable for harvesting energy in relatively high frequency ranges (500 Hz to 14 kHz), but are not effective in harvesting low frequency (<10 Hz) vibration energy, such as energy from human walking or ocean wave, for which MEMS power generators are most desired. In this paper, a new cantilever-beam MEMS power generator is proposed, which can greatly improve the power conversion for low frequency circumstances. The power generator consists of two sets of cantilever beams: 1. A properly designed mm-size cantilever-beam with metal as the proof mass, and having low resonant frequency matching that of the external low frequency excitation sources. This is to be used to effectively couple the external motion. 2. An array of micro thin film piezoelectric (PZT) cantilever-beams, each with metal as proof mass, and having higher resonant frequencies. The external excitation is coupled to the single cantilever beam with kinetic energy. Through impact between the mm-size cantilever beam (low frequency) and the micro cantilever beam array (high frequency), the coupled mechanical energy is transferred to electrical energy through piezoelectric effect. Simulation results show that energy conversion efficiency can be greatly improved by using such a coupled structure as compared to that of only using MEMS cantilever beams with high frequency or a single mm-size beam structure. This may have a wide range of applications in pervasive computing and biomedical engineering.


2018 ◽  
Vol 208 ◽  
pp. 04003
Author(s):  
Binjie Song ◽  
Jianhai Yue ◽  
Zhunqing Hu

In order to solve the problem of sustainable energy supply for low-power electronic products used in low-frequency vibration environment, the mathematic model was established based on the theory of piezoelectricity and Euler-Bernoulli beam. Also, the effects of different parameters of PZT unimorph beams such as the length, width, and tip mass on generating capacity were studied by FEM. The results show that the energy harvester with PZT unimorph beam and tip mass is suitable for low-frequency vibration environment. Increasing the length or reducing the width of the beam can significantly lower the first-order modal frequency of energy harvester when other conditions remain the same. Within certain range, the first-order modal frequency of the beam also gradually reduced as the tip mass increasing. When the size of the PZT unimorph beam is 60x60x0.33mm, the tip mass is 8.92g and an exciting force of 0.01N is applied to it along z axis, an output of 8.1V can be obtained. Meanwhile, the PZT unimorph beam is under the first vibration mode and the resonant frequency is 16.296Hz.


Sign in / Sign up

Export Citation Format

Share Document