scholarly journals Epileptic Seizure Prediction over EEG Data using Hybrid CNN-SVM Model with Edge Computing Services

2018 ◽  
Vol 210 ◽  
pp. 03016 ◽  
Author(s):  
Punjal Agarwal ◽  
Hwang-Cheng Wang ◽  
Kathiravan Srinivasan

Epilepsy is one of the most common neurological disorders, which is characterized by unpredictable brain seizure. About 30% of the patients are not even aware that they have epilepsy and many have to undergo surgeries to relieve the pain. Therefore, developing a robust brain-computer interface for seizure prediction can help epileptic patients significantly. In this paper, we propose a hybrid CNN-SVM model for better epileptic seizure prediction. A convolutional neural network (CNN) consists of a multilayer structure, which can be adapted and modified according to the requirement of different applications. A support vector machine is a discriminative classifier which can be described by a separating optimal hyperplane used for categorizing new samples. The combination of CNN and SVM is found to provide an effective way for epileptic prediction. Furthermore, the resulting model is made autonomous using edge computing services and is shown to be a viable seizure prediction method. The results can be beneficial in real-life support of epilepsy patients.

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7972
Author(s):  
Jee S. Ra ◽  
Tianning Li ◽  
Yan Li

The key research aspects of detecting and predicting epileptic seizures using electroencephalography (EEG) signals are feature extraction and classification. This paper aims to develop a highly effective and accurate algorithm for seizure prediction. Efficient channel selection could be one of the solutions as it can decrease the computational loading significantly. In this research, we present a patient-specific optimization method for EEG channel selection based on permutation entropy (PE) values, employing K nearest neighbors (KNNs) combined with a genetic algorithm (GA) for epileptic seizure prediction. The classifier is the well-known support vector machine (SVM), and the CHB-MIT Scalp EEG Database is used in this research. The classification results from 22 patients using the channels selected to the patient show a high prediction rate (average 92.42%) compared to the SVM testing results with all channels (71.13%). On average, the accuracy, sensitivity, and specificity with selected channels are improved by 10.58%, 23.57%, and 5.56%, respectively. In addition, four patient cases validate over 90% accuracy, sensitivity, and specificity rates with just a few selected channels. The corresponding standard deviations are also smaller than those used by all channels, demonstrating that tailored channels are a robust way to optimize the seizure prediction.


2010 ◽  
Vol 57 (5) ◽  
pp. 1124-1132 ◽  
Author(s):  
Luigi Chisci ◽  
Antonio Mavino ◽  
Guido Perferi ◽  
Marco Sciandrone ◽  
Carmelo Anile ◽  
...  

2021 ◽  
Vol 1916 (1) ◽  
pp. 012075
Author(s):  
V Seethalakshmi ◽  
P Naveenkumar ◽  
G Kavin Prabu ◽  
S Praveen Kumaar

2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.


Sign in / Sign up

Export Citation Format

Share Document