New Multi-View Classification Method with Uncertain Data

2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.

2018 ◽  
Vol 210 ◽  
pp. 03016 ◽  
Author(s):  
Punjal Agarwal ◽  
Hwang-Cheng Wang ◽  
Kathiravan Srinivasan

Epilepsy is one of the most common neurological disorders, which is characterized by unpredictable brain seizure. About 30% of the patients are not even aware that they have epilepsy and many have to undergo surgeries to relieve the pain. Therefore, developing a robust brain-computer interface for seizure prediction can help epileptic patients significantly. In this paper, we propose a hybrid CNN-SVM model for better epileptic seizure prediction. A convolutional neural network (CNN) consists of a multilayer structure, which can be adapted and modified according to the requirement of different applications. A support vector machine is a discriminative classifier which can be described by a separating optimal hyperplane used for categorizing new samples. The combination of CNN and SVM is found to provide an effective way for epileptic prediction. Furthermore, the resulting model is made autonomous using edge computing services and is shown to be a viable seizure prediction method. The results can be beneficial in real-life support of epilepsy patients.


2011 ◽  
Vol 8 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Milos Bozic ◽  
Milos Stojanovic

This paper presents an approach for the medium-term load forecasting using Support Vector Machines (SVMs). The proposed SVM model was employed to predict the maximum daily load demand for the period of a month. Analyses of available data were performed and the most important features for the construction of SVM model are selected. It was shown that the size and the structure of the training set may significantly affect the accuracy of predictions. The presented model was tested by applying it on real-life load data obtained from distribution company 'ED Jugoistok' for the territory of city Nis and its surroundings. Experimental results show that the proposed approach gives acceptable results for the entire period of prediction, which are in range with other solutions in this area.


Author(s):  
Muhammet Unal ◽  
Yusuf Sahin ◽  
Mustafa Onat ◽  
Mustafa Demetgul ◽  
Haluk Kucuk

Rolling bearings are key components in most mechanical facilities; hence, the diagnosis of their faults is very important in predictive maintenance. Up to date, vibration analysis has been widely used for fault diagnosis in practice. However, acoustic analysis is still a novel approach. In this study, acoustic analysis with classification is used for fault diagnosis of rolling bearings. First, Hilbert transform (HT) and power spectral density (PSD) are used to extract features from the original sound signal. Then, decision tree algorithm C5.0, support vector machines (SVMs) and the ensemble method boosting are used to build models to classify the instances for three different classification tasks. Performances of the classifiers are compared w.r.t. accuracy and receiver operating characteristic (ROC) curves. Although C5.0 and SVM show comparable performances, C5.0 with boosting classifier indicates the highest performance and perfectly discriminates normal instances from the faulty ones in each task. The defect sizes to create faults used in this study are notably small compared to previous studies. Moreover, fault diagnosis is done for rolling bearings operating at different loading conditions and speeds. Furthermore, one of the classification tasks incorporates diagnosis of five states including four different faults. Thus, these models, due to their high performance in classifying multiple defect scenarios having different loading conditions and speeds, can be readily implemented and applied to real-life situations to detect and classify even incipient faults of rolling bearings of any rotating machinery.


Author(s):  
Everton Santana ◽  
Saulo Mastelini ◽  
Sylvio Jr.

Purchasing air tickets by the lowest price is a challenging task for consumers since the prices might fluctuate over time influenced by several factors. In order to support users’ decision, some price prediction techniques have been developed. Considering that this problem could be solved by multi-target approaches from Machine Learning, this work proposes a novel method looking forward to obtaining an improvement in air ticket prices prediction. The method, called Deep Regressor Stacking (DRS), applies a naive deep learning methodology to reach more accurate predictions. To evaluate the contribution of the DRS, it was compared with the competence of the single-target regression and two state-of-the-art multi-target regressions (Stacked Single Target and Ensemble of Regressor Chains). All four approaches were performed based on Random Forest and Support Vector Machine algorithms over two real-life airfares datasets. After results, it was concluded DRS outperformed the other three methods, being the most indicated (most predictive) to assist air passengers in the prediction of flight ticket price.


Author(s):  
Juanjuan Wang ◽  
Haoran Yang ◽  
Ning Xu ◽  
Chengqin Wu ◽  
Zengshun Zhao ◽  
...  

AbstractLong-term visual tracking undergoes more challenges and is closer to realistic applications than short-term tracking. However, the performances of most existing methods have been limited in the long-term tracking tasks. In this work, we present a reliable yet simple long-term tracking method, which extends the state-of-the-art learning adaptive discriminative correlation filters (LADCF) tracking algorithm with a re-detection component based on the support vector machine (SVM) model. The LADCF tracking algorithm localizes the target in each frame, and the re-detector is able to efficiently re-detect the target in the whole image when the tracking fails. We further introduce a robust confidence degree evaluation criterion that combines the maximum response criterion and the average peak-to-correlation energy (APCE) to judge the confidence level of the predicted target. When the confidence degree is generally high, the SVM is updated accordingly. If the confidence drops sharply, the SVM re-detects the target. We perform extensive experiments on the OTB-2015 and UAV123 datasets. The experimental results demonstrate the effectiveness of our algorithm in long-term tracking.


2014 ◽  
Vol 609-610 ◽  
pp. 1448-1452
Author(s):  
Kun Zhang ◽  
Min Rui Fei

Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. This paper presents a novel approach for adaptive colony segmentation by classifying the detected peaks of intensity histograms of images. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained support vector machine (USVM) has better recognition accuracy than the other state of the art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.


2022 ◽  
Vol 183 (3-4) ◽  
pp. 293-317
Author(s):  
Anna Kalenkova ◽  
Josep Carmona ◽  
Artem Polyvyanyy ◽  
Marcello La Rosa

State-of-the-art process discovery methods construct free-choice process models from event logs. Consequently, the constructed models do not take into account indirect dependencies between events. Whenever the input behaviour is not free-choice, these methods fail to provide a precise model. In this paper, we propose a novel approach for enhancing free-choice process models by adding non-free-choice constructs discovered a-posteriori via region-based techniques. This allows us to benefit from the performance of existing process discovery methods and the accuracy of the employed fundamental synthesis techniques. We prove that the proposed approach preserves fitness with respect to the event log while improving the precision when indirect dependencies exist. The approach has been implemented and tested on both synthetic and real-life datasets. The results show its effectiveness in repairing models discovered from event logs.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7945
Author(s):  
Yinlong Zhu ◽  
Fujie Zhang ◽  
Lixia Li ◽  
Yuhao Lin ◽  
Zhongxiong Zhang ◽  
...  

The existing classification methods for Panax notoginseng taproots suffer from low accuracy, low efficiency, and poor stability. In this study, a classification model based on image feature fusion is established for Panax notoginseng taproots. The images of Panax notoginseng taproots collected in the experiment are preprocessed by Gaussian filtering, binarization, and morphological methods. Then, a total of 40 features are extracted, including size and shape features, HSV and RGB color features, and texture features. Through BP neural network, extreme learning machine (ELM), and support vector machine (SVM) models, the importance of color, texture, and fusion features for the classification of the main roots of Panax notoginseng is verified. Among the three models, the SVM model performs the best, achieving an accuracy of 92.037% on the prediction set. Next, iterative retaining information variables (IRIVs), variable iterative space shrinkage approach (VISSA), and stepwise regression analysis (SRA) are used to reduce the dimension of all the features. Finally, a traditional machine learning SVM model based on feature selection and a deep learning model based on semantic segmentation are established. With the model size of only 125 kb and the training time of 3.4 s, the IRIV-SVM model achieves an accuracy of 95.370% on the test set, so IRIV-SVM is selected as the main root classification model for Panax notoginseng. After being optimized by the gray wolf optimizer, the IRIV-GWO-SVM model achieves the highest classification accuracy of 98.704% on the test set. The study results of this paper provide a basis for developing online classification methods of Panax notoginseng with different grades in actual production.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2274
Author(s):  
Hongwu Qin ◽  
Yanan Wang ◽  
Xiuqin Ma ◽  
Jin Wang

Interval-valued fuzzy soft set theory is a powerful tool that can provide the uncertain data processing capacity in an imprecise environment. The two existing methods for decision making based on this model were proposed. However, when there are some extreme values or outliers on the datasets based on interval-valued fuzzy soft set for making decisions, the existing methods are not reasonable and efficient, which may ignore some excellent candidates. In order to solve this problem, we give a novel approach to decision making based on interval-valued fuzzy soft set by means of the contrast table. Here, the contrast table has symmetry between the objects. Our proposed algorithm makes decisions based on the number of superior parameter values rather than score values, which is a new perspective to make decisions. The comparison results of three methods on two real-life cases show that, the proposed algorithm has superiority to the existing algorithms for the feasibility and efficiency when we face up to the extreme values of the uncertain datasets. Our proposed algorithm can also examine some extreme or unbalanced values for decision making if we regard this method as supplement of the existing algorithms.


Robotica ◽  
2008 ◽  
Vol 26 (6) ◽  
pp. 767-779 ◽  
Author(s):  
Ibrahim Halatci ◽  
Christopher A. Brooks ◽  
Karl Iagnemma

SUMMARYKnowledge of the physical properties of terrain surrounding a planetary exploration rover can be used to allow a rover system to fully exploit its mobility capabilities. Terrain classification methods provide semantic descriptions of the physical nature of a given terrain region. These descriptions can be associated with nominal numerical physical parameters, and/or nominal traversability estimates, to improve mobility prediction accuracy. Here we study the performance of multisensor classification methods in the context of Mars surface exploration. The performance of two classification algorithms for color, texture, and range features are presented based on maximum likelihood estimation and support vector machines. In addition, a classification method based on vibration features derived from rover wheel–terrain interaction is briefly described. Two techniques for merging the results of these “low-level” classifiers are presented that rely on Bayesian fusion and meta-classifier fusion. The performance of these algorithms is studied using images from NASA's Mars Exploration Rover mission and through experiments on a four-wheeled test-bed rover operating in Mars-analog terrain. Also a novel approach to terrain sensing based on fused tactile and visual features is presented. It is shown that accurate terrain classification can be achieved via classifier fusion from visual and tactile features.


Sign in / Sign up

Export Citation Format

Share Document