scholarly journals Analysis of Solar PV Application Based on Bidirectional Inverter

2018 ◽  
Vol 225 ◽  
pp. 04017
Author(s):  
A. Maideen Abdhulkader Jeylani ◽  
J. Kanakaraj ◽  
A. Mahaboob Subahani ◽  
K. Rameshkumar

Building a DC-DC converter with high step-up, low cost and high efficiency from low DC voltage is the requirement in many applications. It is achieved by employing a front end boost converter based full bridge inverter on bidirectional inverter. In conventional boost converter during device turn-off, voltage overshoot occurs across the semiconductor devices. So, an additional snubber or voltage clamping is required to limit the overshot voltage. It upturns the component’s count and losses making the converter less efficient. The above problem can be avoided by operate the converter with soft-switching method by using secondary modulation technique. Hence, it avoids the need of additional snubber or auxiliary circuit. Soft switching operation is proposed in the bidirectional inverter. Soft switching operation is achieved through the auxiliary circuit, which consist of two auxiliary switches, Front end converter and full bridge inverter. Bidirectional inverter allows current flow in both direction and therefore permits energy flow from the grid to storage when solar energy is not available. The theoretical analysis of the proposed converter is verified using simulation results.

2020 ◽  
Vol 13 (17) ◽  
pp. 3910-3921
Author(s):  
Peyman Alavi ◽  
Arash Khoshkbar-Sadigh ◽  
Ebrahim Babaei ◽  
Parham Mohseni ◽  
Vafa Marzang ◽  
...  

Author(s):  
G. NARESH GOUD ◽  
Y. LAKSHMI DEEPA ◽  
G.DILLI BABU ◽  
P. RAJASEKHAR ◽  
N. GANGADHER

A new soft-switching boost converter is proposed in this paper. The conventional boost converter generates switching losses at turn ON and OFF, and this causes a reduction in the whole system’s efficiency. The proposed boost converter utilizes a soft switching method using an auxiliary circuit with a resonant inductor and capacitor, auxiliary switch, and diodes. Therefore, the proposed soft-switching boost converter reduces switching losses more than the conventional hard-switching converter. The efficiency, which is about 91% in hard switching, increases to about 97% in the proposed soft-switching converter. In this paper, the performance of the proposed soft-switching boost converter is verified through the theoretical analysis, simulation, and experimental results.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chouki Balakishan ◽  
N. Sandeep ◽  
M. V. Aware

In many photovoltaic (PV) energy conversion systems, nonisolated DC-DC converters with high voltage gain are desired. The PV exhibits a nonlinear power characteristic which greatly depends on the environmental conditions. Hence in order to draw maximum available power various algorithms are used with PV voltage/current or both as an input for the maximum power point tracking (MPPT) controller. In this paper, golden section search (GSS) based MPPT control and its application with three-level DC-DC boost converter for MPPT are demonstrated. The three-level boost converter provides the high voltage transfer which enables the high power PV system to work with low size inductors with high efficiency. The balancing of the voltage across the two capacitors of the converter and MPPT is achieved using a simple duty cycle based voltage controller. Detailed simulation of three-level DC-DC converter topology with GSS algorithm is carried out in MATLAB/SIMULINK platform. The validation of the proposed system is done by the experiments carried out on hardware prototype of 100 W converter with low cost AT’mega328 controller as a core controller. From the results, the proposed system suits as one of the solutions for PV based generation system and the experimental results show high performance, such as a conversion efficiency of 94%.


Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

In this paper, Zero-Voltage-Transition (ZVT) two-cell interleaved boost Power Factor Correction (PFC) converter for voltage source Inverter (VSI) fed permanent magnet brushless DC motor (PMBLDCM) drive has been proposed Scheme reduce the torque ripple of BLDC motor drive and also reduce the switching losses of VSI for Which an auxiliary circuit is designed and added to the interleaved boost converter.  For achieving soft switching, only one switch is used in auxiliary circuit which reduces the torque ripple and switching losses. In this proposed control strategy, the DC link voltage is controlled with interleaved boost converter which is proportional to the desired speed of the BLDC motor. In this paper, six switch and four switch VSI is also implemented with interleaved boost converter topology. A comparison is made between the six switch and Four Switch VSI fed PMBLDC Motor drive and Torque Analysis as been done. To validate the proposed work, results are presented. The results showed that proposed converter control strategy operating under soft switching mode improves the efficiency of the drive system with PFC feature in wide range of the speed control.


Sign in / Sign up

Export Citation Format

Share Document