scholarly journals Deep Convolutional Neural Network for Pedestrian Detection with Multi-Levels Features Fusion

2018 ◽  
Vol 232 ◽  
pp. 01061
Author(s):  
Danhua Li ◽  
Xiaofeng Di ◽  
Xuan Qu ◽  
Yunfei Zhao ◽  
Honggang Kong

Pedestrian detection aims to localize and recognize every pedestrian instance in an image with a bounding box. The current state-of-the-art method is Faster RCNN, which is such a network that uses a region proposal network (RPN) to generate high quality region proposals, while Fast RCNN is used to classifiers extract features into corresponding categories. The contribution of this paper is integrated low-level features and high-level features into a Faster RCNN-based pedestrian detection framework, which efficiently increase the capacity of the feature. Through our experiments, we comprehensively evaluate our framework, on the Caltech pedestrian detection benchmark and our methods achieve state-of-the-art accuracy and present a competitive result on Caltech dataset.

Author(s):  
K. Rahmani ◽  
H. Mayer

In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF), Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.


2018 ◽  
Vol 4 (9) ◽  
pp. 107 ◽  
Author(s):  
Mohib Ullah ◽  
Ahmed Mohammed ◽  
Faouzi Alaya Cheikh

Articulation modeling, feature extraction, and classification are the important components of pedestrian segmentation. Usually, these components are modeled independently from each other and then combined in a sequential way. However, this approach is prone to poor segmentation if any individual component is weakly designed. To cope with this problem, we proposed a spatio-temporal convolutional neural network named PedNet which exploits temporal information for spatial segmentation. The backbone of the PedNet consists of an encoder–decoder network for downsampling and upsampling the feature maps, respectively. The input to the network is a set of three frames and the output is a binary mask of the segmented regions in the middle frame. Irrespective of classical deep models where the convolution layers are followed by a fully connected layer for classification, PedNet is a Fully Convolutional Network (FCN). It is trained end-to-end and the segmentation is achieved without the need of any pre- or post-processing. The main characteristic of PedNet is its unique design where it performs segmentation on a frame-by-frame basis but it uses the temporal information from the previous and the future frame for segmenting the pedestrian in the current frame. Moreover, to combine the low-level features with the high-level semantic information learned by the deeper layers, we used long-skip connections from the encoder to decoder network and concatenate the output of low-level layers with the higher level layers. This approach helps to get segmentation map with sharp boundaries. To show the potential benefits of temporal information, we also visualized different layers of the network. The visualization showed that the network learned different information from the consecutive frames and then combined the information optimally to segment the middle frame. We evaluated our approach on eight challenging datasets where humans are involved in different activities with severe articulation (football, road crossing, surveillance). The most common CamVid dataset which is used for calculating the performance of the segmentation algorithm is evaluated against seven state-of-the-art methods. The performance is shown on precision/recall, F 1 , F 2 , and mIoU. The qualitative and quantitative results show that PedNet achieves promising results against state-of-the-art methods with substantial improvement in terms of all the performance metrics.


2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2018 ◽  
Vol 8 (12) ◽  
pp. 2367 ◽  
Author(s):  
Hongling Luo ◽  
Jun Sang ◽  
Weiqun Wu ◽  
Hong Xiang ◽  
Zhili Xiang ◽  
...  

In recent years, the trampling events due to overcrowding have occurred frequently, which leads to the demand for crowd counting under a high-density environment. At present, there are few studies on monitoring crowds in a large-scale crowded environment, while there exists technology drawbacks and a lack of mature systems. Aiming to solve the crowd counting problem with high-density under complex environments, a feature fusion-based deep convolutional neural network method FF-CNN (Feature Fusion of Convolutional Neural Network) was proposed in this paper. The proposed FF-CNN mapped the crowd image to its crowd density map, and then obtained the head count by integration. The geometry adaptive kernels were adopted to generate high-quality density maps which were used as ground truths for network training. The deconvolution technique was used to achieve the fusion of high-level and low-level features to get richer features, and two loss functions, i.e., density map loss and absolute count loss, were used for joint optimization. In order to increase the sample diversity, the original images were cropped with a random cropping method for each iteration. The experimental results of FF-CNN on the ShanghaiTech public dataset showed that the fusion of low-level and high-level features can extract richer features to improve the precision of density map estimation, and further improve the accuracy of crowd counting.


2020 ◽  
Vol 7 ◽  
Author(s):  
Uttam U. Deshpande ◽  
V. S. Malemath ◽  
Shivanand M. Patil ◽  
Sushma V. Chaugule

Automatic Latent Fingerprint Identification Systems (AFIS) are most widely used by forensic experts in law enforcement and criminal investigations. One of the critical steps used in automatic latent fingerprint matching is to automatically extract reliable minutiae from fingerprint images. Hence, minutiae extraction is considered to be a very important step in AFIS. The performance of such systems relies heavily on the quality of the input fingerprint images. Most of the state-of-the-art AFIS failed to produce good matching results due to poor ridge patterns and the presence of background noise. To ensure the robustness of fingerprint matching against low quality latent fingerprint images, it is essential to include a good fingerprint enhancement algorithm before minutiae extraction and matching. In this paper, we have proposed an end-to-end fingerprint matching system to automatically enhance, extract minutiae, and produce matching results. To achieve this, we have proposed a method to automatically enhance the poor-quality fingerprint images using the “Automated Deep Convolutional Neural Network (DCNN)” and “Fast Fourier Transform (FFT)” filters. The Deep Convolutional Neural Network (DCNN) produces a frequency enhanced map from fingerprint domain knowledge. We propose an “FFT Enhancement” algorithm to enhance and extract the ridges from the frequency enhanced map. Minutiae from the enhanced ridges are automatically extracted using a proposed “Automated Latent Minutiae Extractor (ALME)”. Based on the extracted minutiae, the fingerprints are automatically aligned, and a matching score is calculated using a proposed “Frequency Enhanced Minutiae Matcher (FEMM)” algorithm. Experiments are conducted on FVC2002, FVC2004, and NIST SD27 latent fingerprint databases. The minutiae extraction results show significant improvement in precision, recall, and F1 scores. We obtained the highest Rank-1 identification rate of 100% for FVC2002/2004 and 84.5% for NIST SD27 fingerprint databases. The matching results reveal that the proposed system outperforms state-of-the-art systems.


2019 ◽  
Vol 9 (19) ◽  
pp. 4182 ◽  
Author(s):  
Pu Yan ◽  
Li Zhuo ◽  
Jiafeng Li ◽  
Hui Zhang ◽  
Jing Zhang

Pedestrian attributes (such as gender, age, hairstyle, and clothing) can effectively represent the appearance of pedestrians. These are high-level semantic features that are robust to illumination, deformation, etc. Therefore, they can be widely used in person re-identification, video structuring analysis and other applications. In this paper, a pedestrian attributes recognition method for surveillance scenarios using a multi-task lightweight convolutional neural network is proposed. Firstly, the labels of the attributes for each pedestrian image are integrated into a label vector. Then, a multi-task lightweight Convolutional Neural Network (CNN) is designed, which consists of five convolutional layers, three pooling layers and two fully connected layers to extract the deep features of pedestrian images. Considering that the data distribution of the datasets is unbalanced, the loss function is improved based on the sigmoid cross-entropy, and the scale factor is added to balance the amount of various attributes data. Through training the network, the mapping relationship model between the deep features of pedestrian images and the integration label vector of their attributes is established, which can be used to predict each attribute of the pedestrian. The experiments were conducted on two public pedestrian attributes datasets in surveillance scenarios, namely PETA and RAP. The results show that, compared with the state-of-the-art pedestrian attributes recognition methods, the proposed method can achieve a superior accuracy by 91.88% on PETA and 87.44% on RAP respectively.


Sign in / Sign up

Export Citation Format

Share Document