scholarly journals Pedestrian Attributes Recognition in Surveillance Scenarios Using Multi-Task Lightweight Convolutional Neural Network

2019 ◽  
Vol 9 (19) ◽  
pp. 4182 ◽  
Author(s):  
Pu Yan ◽  
Li Zhuo ◽  
Jiafeng Li ◽  
Hui Zhang ◽  
Jing Zhang

Pedestrian attributes (such as gender, age, hairstyle, and clothing) can effectively represent the appearance of pedestrians. These are high-level semantic features that are robust to illumination, deformation, etc. Therefore, they can be widely used in person re-identification, video structuring analysis and other applications. In this paper, a pedestrian attributes recognition method for surveillance scenarios using a multi-task lightweight convolutional neural network is proposed. Firstly, the labels of the attributes for each pedestrian image are integrated into a label vector. Then, a multi-task lightweight Convolutional Neural Network (CNN) is designed, which consists of five convolutional layers, three pooling layers and two fully connected layers to extract the deep features of pedestrian images. Considering that the data distribution of the datasets is unbalanced, the loss function is improved based on the sigmoid cross-entropy, and the scale factor is added to balance the amount of various attributes data. Through training the network, the mapping relationship model between the deep features of pedestrian images and the integration label vector of their attributes is established, which can be used to predict each attribute of the pedestrian. The experiments were conducted on two public pedestrian attributes datasets in surveillance scenarios, namely PETA and RAP. The results show that, compared with the state-of-the-art pedestrian attributes recognition methods, the proposed method can achieve a superior accuracy by 91.88% on PETA and 87.44% on RAP respectively.

2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


2018 ◽  
Vol 232 ◽  
pp. 01061
Author(s):  
Danhua Li ◽  
Xiaofeng Di ◽  
Xuan Qu ◽  
Yunfei Zhao ◽  
Honggang Kong

Pedestrian detection aims to localize and recognize every pedestrian instance in an image with a bounding box. The current state-of-the-art method is Faster RCNN, which is such a network that uses a region proposal network (RPN) to generate high quality region proposals, while Fast RCNN is used to classifiers extract features into corresponding categories. The contribution of this paper is integrated low-level features and high-level features into a Faster RCNN-based pedestrian detection framework, which efficiently increase the capacity of the feature. Through our experiments, we comprehensively evaluate our framework, on the Caltech pedestrian detection benchmark and our methods achieve state-of-the-art accuracy and present a competitive result on Caltech dataset.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1999
Author(s):  
Sadiq H. Abdulhussain ◽  
Basheera M. Mahmmod ◽  
Marwah Abdulrazzaq Naser ◽  
Muntadher Qasim Alsabah ◽  
Roslizah Ali ◽  
...  

Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential application in more realistic noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition method that is accurate in the more practical noisy environment is crucial. To this end, this paper proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials. Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce the complexity of feature extraction, the embedded image kernel technique has been adopted. In addition, support vector machine is used to classify the extracted features for the different numerals. The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic, and Devanagari. We compare the accuracy of the proposed numeral recognition method with the accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed method with the most updated method of a convolutional neural network. The results show that the proposed method achieves almost the highest recognition accuracy in comparison with the existing recognition methods in all the scenarios considered. Importantly, the results demonstrate that the proposed method is robust against the noise distortion and outperforms the convolutional neural network considerably, which signifies the feasibility and the effectiveness of the proposed approach in comparison to the state-of-the-art recognition methods under both clean noise and more realistic noise environments.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5786
Author(s):  
Lei Guo ◽  
Gang Xie ◽  
Xinying Xu ◽  
Jinchang Ren

Melanoma recognition is challenging due to data imbalance and high intra-class variations and large inter-class similarity. Aiming at the issues, we propose a melanoma recognition method using deep convolutional neural network with covariance discriminant loss in dermoscopy images. Deep convolutional neural network is trained under the joint supervision of cross entropy loss and covariance discriminant loss, rectifying the model outputs and the extracted features simultaneously. Specifically, we design an embedding loss, namely covariance discriminant loss, which takes the first and second distance into account simultaneously for providing more constraints. By constraining the distance between hard samples and minority class center, the deep features of melanoma and non-melanoma can be separated effectively. To mine the hard samples, we also design the corresponding algorithm. Further, we analyze the relationship between the proposed loss and other losses. On the International Symposium on Biomedical Imaging (ISBI) 2018 Skin Lesion Analysis dataset, the two schemes in the proposed method can yield a sensitivity of 0.942 and 0.917, respectively. The comprehensive results have demonstrated the efficacy of the designed embedding loss and the proposed methodology.


Author(s):  
Gregory Malyshev ◽  
Vyacheslav Andreev ◽  
Olga Andreeva ◽  
Oleg Chistyakov ◽  
Dmitriy Sveshnikov

This article explores the capabilities of pretrained convolutional neural networks in relation to the problem of recognizing defects for which it is impossible to identify any abstract features. The results of training the convolutional neural network AlexNet and the fully connected classifier of the VGG16 network are compared. The efficiency of using a pretrained neural network in the problem of defect recognition is demonstrated. A graph of the change in the proportion of correctly recognized images in the process of training a fully connected classifier is presented. The article attempts to explain the efficiency of a fully connected neural network classifier trained on a critically small training dataset with images of defects. The work of a convolutional neural network with a fully connected classifier is investigated. The classifier allows for classification into five categories: «crack» type defects, «chip» type defects, «hole» type defects, «multi hole» type defects and «defect-free surface». The article provides examples of convolutional network activation channels, visualized for each of the five categories. The signs of defects on which the activation of the network channels takes place are formulated. The classification errors made by the network are analyzed. The article provides predictive probabilities, below which the result of the network operation can be considered doubtful. Practical recommendations for using the trained network are given.


2021 ◽  
Vol 13 (24) ◽  
pp. 5076
Author(s):  
Di Wang ◽  
Jinhui Lan

Remote sensing scene classification converts remote sensing images into classification information to support high-level applications, so it is a fundamental problem in the field of remote sensing. In recent years, many convolutional neural network (CNN)-based methods have achieved impressive results in remote sensing scene classification, but they have two problems in extracting remote sensing scene features: (1) fixed-shape convolutional kernels cannot effectively extract features from remote sensing scenes with complex shapes and diverse distributions; (2) the features extracted by CNN contain a large number of redundant and invalid information. To solve these problems, this paper constructs a deformable convolutional neural network to adapt the convolutional sampling positions to the shape of objects in the remote sensing scene. Meanwhile, the spatial and channel attention mechanisms are used to focus on the effective features while suppressing the invalid ones. The experimental results indicate that the proposed method is competitive to the state-of-the-art methods on three remote sensing scene classification datasets (UCM, NWPU, and AID).


2019 ◽  
Vol 24 (3) ◽  
pp. 220-228
Author(s):  
Gusti Alfahmi Anwar ◽  
Desti Riminarsih

Panthera merupakan genus dari keluarga kucing yang memiliki empat spesies popular yaitu, harimau, jaguar, macan tutul, singa. Singa memiliki warna keemasan dan tidak memilki motif, harimau memiliki motif loreng dengan garis-garis panjang, jaguar memiliki tubuh yang lebih besar dari pada macan tutul serta memiliki motif tutul yang lebih lebar, sedangkan macan tutul memiliki tubuh yang sedikit lebih ramping dari pada jaguar dan memiliki tutul yang tidak terlalu lebar. Pada penelitian ini dilakukan klasifikasi genus panther yaitu harimau, jaguar, macan tutul, dan singa menggunakan metode Convolutional Neural Network. Model Convolutional Neural Network yang digunakan memiliki 1 input layer, 5 convolution layer, dan 2 fully connected layer. Dataset yang digunakan berupa citra harimau, jaguar, macan tutul, dan singa. Data training terdiri dari 3840 citra, data validasi sebanyak 960 citra, dan data testing sebanyak 800 citra. Hasil akurasi dari pelatihan model untuk training yaitu 92,31% dan validasi yaitu 81,88%, pengujian model menggunakan dataset testing mendapatan hasil 68%. Hasil akurasi prediksi didapatkan dari nilai F1-Score pada pengujian didapatkan sebesar 78% untuk harimau, 70% untuk jaguar, 37% untuk macan tutul, 74% untuk singa. Macan tutul mendapatkan akurasi terendah dibandingkan 3 hewan lainnya tetapi lebih baik dibandingkan hasil penelitian sebelumnya.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 119
Author(s):  
Tao Wang ◽  
Changhua Lu ◽  
Yining Sun ◽  
Mei Yang ◽  
Chun Liu ◽  
...  

Early detection of arrhythmia and effective treatment can prevent deaths caused by cardiovascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram (ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different time-frequency components, and CNN is used to extract features from the 2D-scalogram composed of the above time-frequency components. Considering the surrounding R peak interval (also called RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted and combined with the CNN features to input into a fully connected layer for ECG classification. By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy, respectively. Compared with existing methods, the overall F1-score of our method is increased by 4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a clinical auxiliary diagnostic tool.


2021 ◽  
pp. 1-10
Author(s):  
Wei Pan ◽  
Fengwei Liu

Combined with the actual characteristics of risk identification in electric power enterprises, a convolutional neural network model suitable for load sequence data prediction is determined. Particle Swarm Optimization (PSO) algorithm is used to transform the convolutional neural network (convolutional neural network) to improve the global Optimization ability and convergence speed. Simulation results show that CNN can effectively extract sample information through its convolutional layer and pool layer. After particle swarm optimization, it also achieves good results in prediction accuracy and prediction speed. Secondly, classical interpretation combination model (ISM) is used to analyze the structure of the risk system of electric power enterprises, and the link relationship model of the risk of electric power enterprises is constructed. Through the structural analysis of risk and risk factors, the paper finds out the mutual influence relationship between risk and risk factors, and further finds out the risk chain and risk source. The classical explanatory structure model is extended to the fuzzy set, and then the influence intensity model of power enterprise risk is built. This model considers the influence of risk intensity when analyzing the risk relationship of electric power enterprises, and gives different risk link relations based on different impact intensity. Through comparative analysis, the relationship between the link relationship model and the influence intensity model of the risk of electric power enterprises is obtained. Put forward the sequence similarity matching algorithm based on adaptive search window (ADTW), average algorithm using Piecewise gathered (Piecewise Aggregate Approximation, PAA) strategy for sequence sampling sequence, low precision and low calculation precision sequence alignment of paths, and according to the change of gradient on the low precision of distance matrix forecast path deviation, expand the scope of limiting path search window; Then, the algorithm gradually improves the sequence accuracy, corrects the path in the search window, calculates the new search window, and finally realizes the fast solution of DTW distance and similarity alignment path.


Sign in / Sign up

Export Citation Format

Share Document