scholarly journals Research of Space Positioning Method Based on Sound Field HBT Interference

2018 ◽  
Vol 232 ◽  
pp. 04028
Author(s):  
Jing Zou ◽  
Lei Nie ◽  
Mengran Liu ◽  
Chuankai Jiang

Based on Hanbury Brown-Twiss (HBT) interference in the sound field, a space positioning method is presented to realize the long-distance and high-precision positioning of sound sources in media. Firstly, theoretical model of HBT interference positioning is established. Location of the sound source can be acquired by analyzing the correlation function of the output signals. Then, sound source localization under different signal-to-noise ratios (SNR) shows that by this method, the sound source can be accurately found with six sensors (two arrays) even the SNR is low to 0.04. Positioning experiment in air is carried out, and the experimental results show that the sound source can be accurately located at 42 meters, and the positioning error is low to 0.1 meters. Thus the validity and accuracy of the HBT interference space location principle is demonstrated. It provides new ideas for the research of long-range target location in sound propagation media (air, water, etc.).

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2618 ◽  
Author(s):  
Chao Sun ◽  
Yuechan Liu

A spherical array is not limited to providing an acoustic map in all directions by the azimuth of the array. In this paper, spherical reverse beamforming for sound source localization based on spherical harmonic beamforming and the principle of sound field reconstruction is proposed in order to output a sharper scanning beam. It is assumed that there is an imaginary sound source at each scan point, and the acoustic map of a spherical array to the actual sound source is regarded as the combination of all of the imaginary sound sources. Sound source localization can be realized by calculating the contribution of each imaginary sound source to the sound field. Also in this work, the non-convex constrained optimization problem is established using p-norm. Combined with the norm method, the sparse solution of the imaginary sources is obtained through iterative weighted techniques, and the resolution of sound source localization is improved significantly. The performance of this method is investigated in comparison to conventional spherical beamforming. The numerical results show that the proposed method can achieve higher resolution for the localization of sound sources without being limited by the frequency and array aperture, and has a stronger ability to suppress fluctuations in background noise.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 429
Author(s):  
Jiangming Jin ◽  
Hao Cheng ◽  
Tianwei Xie ◽  
Huancai Lu

Controlling low frequency noise in an interior sound field is always a challenge in engineering, because it is hard to accurately localize the sound source. Spherical acoustic holography can reconstruct the 3D distributions of acoustic quantities in the interior sound field, and identify low-frequency sound sources, but the ultimate goal of controlling the interior noise is to improve the sound quality in the interior sound field. It is essential to know the contributions of sound sources to the sound quality objective parameters. This paper presents the mapping methodology from sound pressure to sound quality objective parameters, where sound quality objective parameters are calculated from sound pressure at each specific point. The 3D distributions of the loudness and sharpness are obtained by calculating each point in the entire interior sound field. The reconstruction errors of those quantities varying with reconstruction distance, sound frequency, and intersection angle are analyzed in numerical simulation for one- and two-monopole source sound fields. Verification experiments have been conducted in an anechoic chamber. Simulation and experimental results demonstrate that the sound source localization results based on 3D distributions of sound quality objective parameters are different from those based on sound pressure.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 532
Author(s):  
Henglin Pu ◽  
Chao Cai ◽  
Menglan Hu ◽  
Tianping Deng ◽  
Rong Zheng ◽  
...  

Multiple blind sound source localization is the key technology for a myriad of applications such as robotic navigation and indoor localization. However, existing solutions can only locate a few sound sources simultaneously due to the limitation imposed by the number of microphones in an array. To this end, this paper proposes a novel multiple blind sound source localization algorithms using Source seParation and BeamForming (SPBF). Our algorithm overcomes the limitations of existing solutions and can locate more blind sources than the number of microphones in an array. Specifically, we propose a novel microphone layout, enabling salient multiple source separation while still preserving their arrival time information. After then, we perform source localization via beamforming using each demixed source. Such a design allows minimizing mutual interference from different sound sources, thereby enabling finer AoA estimation. To further enhance localization performance, we design a new spectral weighting function that can enhance the signal-to-noise-ratio, allowing a relatively narrow beam and thus finer angle of arrival estimation. Simulation experiments under typical indoor situations demonstrate a maximum of only 4∘ even under up to 14 sources.


2001 ◽  
Author(s):  
Arzu Gonenc Sorguc ◽  
Ichiro Hagiwara ◽  
Qinzhong Shi ◽  
Haldun Akagunduz

Abstract In this study, sound field inside acoustically-structurally coupled rectangular cavity excited by structural loading and sound sources is shaped by optimizing the position of the sound source. In the optimization, Most Probable Optimal Design (MPOD) based on Holographic Neural Network is employed and the results are compared with Sequential Quadratic Programming (SQP). It is shown that source position, rather than source strength, is more effective in acoustically controlled modes. The nodal positions for in-vacuo acoustical normal modes are good candidates for initial starting points.


Author(s):  
Michael Bartelt ◽  
Juan D. Laguna ◽  
Joerg R. Seume

One of the greatest challenges in modern aircraft propulsion design is the reduction of the engine noise emission in order to develop quieter aircrafts. In the course of a current research project, the sound transport in low pressure turbines is investigated. For the corresponding experimental measurements, a specific acoustic excitation system is developed which can be implemented into the inlet of a turbine test rig and into an aeroacoustic wind tunnel. This allows for an acoustic mode generation and a synthesis of various sound source patterns to simulate typical turbomachinery noise sources such as rotor-stator interaction, etc. The paper presents the acoustical and technical design methodology in detail and addresses the experimental options of the system. Particular attention is paid to the design and the numerical optimization of the acoustic excitation units. To validate the sound generator during operation, measurements are performed in an aeroacoustic wind tunnel. For this purpose, an in-duct microphone array with a specific beamforming algorithm for hard-walled ducts is developed and applied to identify the source locations. The synthetically excited sound fields and the propagating acoustic modes are measured and analyzed by means of modal decomposition techniques. The measurement principles and the results are discussed in detail and it is shown that the intended sound source is produced and the intended sound field is excited. This paper shall contribute to help guide the development of excitation systems for aeroacoustic experiments to better understanding the physics of sound propagation within turbomachines.


Author(s):  
Felix Grimm ◽  
Roland Ewert ◽  
Jürgen Dierke ◽  
Gilles Reichling ◽  
Berthold Noll ◽  
...  

A gas turbine model combustor is simulated with a hybrid, stochastic and particle-based method for combustion noise prediction with full 3D sound source modeling and sound propagation. Alongside, an incompressible LES simulation of the burner is considered for the investigation of the performance of the hybrid approach. The highly efficient time-domain method consists of a stochastic sound source reconstruction algorithm, the Fast Random Particle Method (FRPM) and sound wave propagation via Linearized Euler Equations (LEEs). In the context of this work, the method is adapted and tested for Combustion Noise (CN) prediction. Monopole sound sources are reconstructed by using an estimation of turbulence statistics from reacting CFD-RANS simulations. First, steady state and unsteady CFD calculations of flow field and combustion of the model combustor are evaluated and compared to experimental results. Two equation modeling for turbulence and the EDM (Eddy Dissipation Model) with FRC (Finite Rate Chemistry) for combustion are employed. In a second step, the acoustics simulation setup for the model combustor is introduced. Selected results are presented and FRPM-CN pressure spectra are compared to experimental levels.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Zhongming Xu ◽  
Kai Tian ◽  
Yansong He ◽  
Zhifei Zhang ◽  
Shu Li

Conventional frequency domain beamforming (FDBF) relies on the measured cross-spectral matrix (CSM). However, in wind tunnel tests, the CSM diagonal is contaminated by the interference of incoherent noise after long-time averaging which leads the source map to poor resolution. Diagonal removal (DR) can suppress the noise in beamforming results via the deletion of CSM diagonal, but this method leads to the underestimation of source levels and some negative powers in source maps. Some advanced methods, such as background subtraction, make use of background noise reference to counteract the effects of contamination; however, the results usually become unreliable, because the background noise is difficult to keep constant in different measurements. Diagonal denoising (DD) beamforming is a recent approach to suppress the contamination effects, but it attenuates the noise suppression performance. To overcome the limitations of the above methods, a new method called denoising weighting beamforming (DWB) is proposed in this study on the basis of CSM DD and an iterative regularization method is applied to solve the acoustical inverse problem. Besides, in order to correct the phase mismatch caused by the influence of flow on sound propagation, the shear flow correction is added before using DWB. Experiments on sound source reconstruction are conducted in the environment with the flow. Acoustics data obtained via this method show the successful removal of incoherent noise and the corrected phase mismatch. Furthermore, the sound source localization results are promising and the proposed method is simple to implement.


2020 ◽  
Vol 5 (4) ◽  
pp. 36-44
Author(s):  
A V Vasilyev

This paper is devoted to the problems of modelling and calculation of propagation of low frequency sound in gas guides of power plants taking to account active sound sources. The structure of software for prediction and calculation of low-frequency sound propagation in gas guides have described. Software uses four-pole method and takes to account radiation from additional (active) sound course. By using software it is possible to estimate sound source parameters to provide efficient sound attenuation. Examples of software application to calculation of intake and exhaust noise of internal combustion engine are described. The results of calculations show the possibilities of four-pole method software using to design acoustically the parameters of gas guides and mufflers for the different fields of applications.


Sign in / Sign up

Export Citation Format

Share Document