scholarly journals Accounting for the flexibility of nodes in the design of steel mesh dome

2018 ◽  
Vol 245 ◽  
pp. 08006
Author(s):  
Egor Kanaev ◽  
Daria Demidova ◽  
Sergey Zimin

This paper presents the results of a study of the stress-strain state of a geodesic dome covering the planetarium designed in the city of Nizhny Novgorod. Four design schemes were created in the SCAD with different types of node modeling. A comparative analysis of the effect of the strain capacity of the “BrGTU” type unit on the stress-strain state of the dome cover has been carried out. The results are obtained on the change in the displacements of the structure nodes and internal forces in the dome bars, with rigid and hinged mates. The option of increasing the diameter of high-strength bolts to reduce the overall deformability of the system is considered. On the basis of the obtained results, it was concluded that it is necessary to take into account the strain capacity of the semirigid connections when designing mesh steel domes.

2020 ◽  
Vol 310 ◽  
pp. 00007
Author(s):  
Vladimir Gordon ◽  
Pavel Morrev ◽  
Olga Pilipenko

A method for analytical assessment of dynamic added stress in elastic loaded beam resting on elastic two-parameter Pasternak’s foundation due to sudden destruction a part of foundation is proposed. Equations of static bending, natural and forced oscillations are written in a matrix form using state vectors including deflection, rotational angles, bending moments, and shear forces at arbitrary cross section of a beam and also using the matrices of the initial parameters influence on the stress-strain state in arbitrary cross section. The influence of foundation failure on beam’s stress-strain state, taking into account a relation between the stiffness parameters of foundation, is analyzed. The condition of smallness for the shear stiffness parameter (Pasternak’s parameter) in comparison with the stretching-compressing stiffness parameter (Vinkler’s parameter) is accepted. It is shown that the accounting of Pasternak’s parameter reduces the level of dynamic added stress in a beam when sudden destructing of a foundation. The factor of sudden defect occurrence in the system “beam – foundation” increases considerably the internal forces in a beam in comparison with quasistatic formation of the same defect.


Author(s):  
Natalia A. Gureeva ◽  
Yuriy V. Klochkov ◽  
Anatoly P. Nikolaev ◽  
Vladislav N. Yushkin

The aim of the work is to perform a comparative analysis of the results of analyzing arbitrarily loaded shells of revolution using finite element method in various formulations, namely, in the formulation of the displacement method and in the mixed formulation. Methods. To obtain the stiffness matrix of a finite element a functional based on the equality of the actual work of external and internal forces was applied. To obtain the deformation matrix in the mixed formulation the functional obtained from the previous one by replacing the actual work of internal forces in it with the difference of the total and additional work was used. Results. In the formulation of the displacement method for an eight-node hexahedral solid finite element, displacements and their first derivatives are taken as the nodal unknowns. Approximation of the displacements of the inner point of the finite element was carried out through the nodal unknowns on the basis of the Hermite polynomials of the third degree. For a finite element in the mixed formulation, displacements and stresses were taken as nodal unknowns. Approximation of the target finite element values through their nodal values in the mixed formulation was carried out on the basis of trilinear functions. It is shown on a test example that a finite element in the mixed formulation improves the accuracy of the strength parameters of the shell of revolution stress-strain state.


2021 ◽  
Vol 266 ◽  
pp. 01022
Author(s):  
Z.A. Besheryan ◽  
I.F. Kantemirov

The development of Russian fuel and energy complex in the short term is connected with the development of new hydrocarbon field in the permafrost zone and the need to build Arctic pipelines north of the 60th parallel. The ground-based structural scheme of pipeline laying is the most optimal while constructing trunk pipelines in permafrost areas in the Arctic and subarctic latitudes. The actual operating conditions of these systems are insufficiently studied. The above-ground pipeline in permafrost is in an complex stress-strain state. This study presents the results of the assessment of the stress-strain state of linearly extended above-ground pipelines at different compensation sections (triangular compensator; trapezoidal compensator; U-shaped compensator) under actual operating conditions. Using the finite element method on mathematical models, the dependences of the transverse displacements of the pipeline on movable supports and stresses arising in dangerous sections of the typical pipeline section during self-compensation of deformations on the variable design parameters of the system for various load combinations were established (the simulation was carried out in the ANSYS software package).


2018 ◽  
Vol 931 ◽  
pp. 60-65 ◽  
Author(s):  
Aleksey N. Beskopylny ◽  
Elena E. Kadomtseva ◽  
Grigory P. Strelnikov

In this paper, we consider the influence of the conditions for fixing a wavy plate lying on an elastic foundation on its stressed-deformed state. The profiled plates are widely used in construction practice as fencing structures, for siding works, for roofing and others. The stress-strain state of the wavy plates varies depending on geometry, materials mechanical properties, foundation characteristics and boundary condition. Steel with polymer coatings, which make the sheets a decorative material, is increasingly used in individual and low-rise buildings. The elastic foundation is considered as Winkler base, so we suppose that the reaction of the base is directly proportional to the deflection of the plate at each point. The Bubnov-Galerkin method is used to determine the stress-strain state of the plate. To solve the problem, we use special orthogonal Legendre polynomials satisfying the boundary conditions: simply supported and clamped edges. The results of the calculations were compared for different types of fixation.


2021 ◽  
Vol 7 (4) ◽  
pp. 5-13
Author(s):  
Gleb A. Averchenko ◽  
Kirill A. Vasilev ◽  
Elena A. Rudakova ◽  
Anastasiya I. Shashko ◽  
Vyacheslav A. Borisov

The object of the study is the forces in the beam-cable systems. The introduction of these systems in construction is associated with the task of creating a pre-stress in order to regulate the stress-strain state of the beam-cable system as a whole. Prestressing will make it possible to rationally use high-strength materials in the structure, and to design the structure economically. When designing girder-cable-stayed structures of bridge spans, it is necessary to determine the sequence of stresses of the structural elements-shrouds in order to regulate the forces in the beam element of the structure. This problem is considered in this article. The dynamic programming method is used to regulate the stress-strain state of the system by pulling the shrouds in the optimal sequence. To solve the problems, formulas for the output value and the optimality criterion, as well as the matrix, are given. As a result, the values of the output values of interest at all stages of the tension of the shrouds are found.


2018 ◽  
Vol 931 ◽  
pp. 315-320 ◽  
Author(s):  
Petr P. Polskoy

The paper presents the research results of the strength of flexible () compressed elements reinforced with various options of external composite reinforcement. The purpose of the experiment is to determine various options of external transverse reinforcement efficiency for different types of stress – strain state of reinforced samples. Another task is to determine the possibility of reinforcing compression elements that exceed the normalized values in the ratio of section dimensions and elements flexibility.


2018 ◽  
Vol 196 ◽  
pp. 01023
Author(s):  
Dmitriy Sidorov ◽  
Vladimir Dorozhinskiy

Advances in construction technology result in increased complexity and multi-functionality of modern buildings and structures. This is especially true for unique structures with large spans and heights. Based on the current standards, such structures must be monitored as well as the stress-strain state (SSS) of supporting structures. In addition, the SSS must be continuously checked during operation. Indeed, facilities of higher complexity are more prone to errors or discrepancies, which can reduce the reliability of some structures as well as the whole system. This can be caused by human factor, variability of external and internal forces and impacts, specifics of erection and installation, and many other reasons. Therefore, unique buildings and structures must be built with monitoring systems or operated under routine inspection. This way we can determine if the behavior of the erected structure complies with the standards and regulations.


Sign in / Sign up

Export Citation Format

Share Document