Strength of Flexible Compressed Elements when Changing the Options of Composite Reinforcement and Application of the Load

2018 ◽  
Vol 931 ◽  
pp. 315-320 ◽  
Author(s):  
Petr P. Polskoy

The paper presents the research results of the strength of flexible () compressed elements reinforced with various options of external composite reinforcement. The purpose of the experiment is to determine various options of external transverse reinforcement efficiency for different types of stress – strain state of reinforced samples. Another task is to determine the possibility of reinforcing compression elements that exceed the normalized values in the ratio of section dimensions and elements flexibility.

2021 ◽  
Vol 2021 (23) ◽  
pp. 167-177
Author(s):  
Serhii Stoyanovich ◽  

Introduction.The current stage of development of the construction industry is associated with the introduction of new materials into practice, compared with the «traditional» (steel, concrete, wood) have certain advantages in the form of improved strength, corrosion resistance, etc. These materials include non-metallic composite reinforcement.Problems Statement. The main disadvantage of non-metallic composite reinforcement (except for carbon fiber reinforcement) is significantly lower modulus of elasticity compared to metal reinforcement. This is the reason for the occurrence of excessive deformations in concrete structures, does not ensure the fulfillment of the requirements for the second group of limiting states. One of the ways to reduce the de-formations of concrete structures, without a significant increase in the percentage of reinforcement of the section, is the use of hybrid reinforcement, when reinforcement is performed simultaneously with metal and composite reinforcement. Currently, there is a very limited amount of experimental data on the stress-strain state of structures with such reinforcement.Purpose. Research of the stress-strain state of structures with hybrid reinforcement, establishing its effectiveness and the optimal ratio of the content of metal and composite reinforcement to achieve sat-isfactory strength and stiffness of a concrete structure.Materials and Methods. The work of beams under load, reinforced with basalt-plastic reinforce-ment, metal reinforcement (control series) and with hybrid reinforcement with metal and basalt-plastic re-inforcement simultaneously was researched. To find out the effect of changes in the content of basalt-plas-tic reinforcement in relation to metal on the performance of beams with hybrid reinforcement, various series of samples of beams with different ratios of basalt-plastic and metal reinforcement.Results. On the basis of the conducted studies, the nature of the work and destruction of concrete beams with hybrid reinforcement was assessed depending on the percentage of metal and basalt-plas-tic reinforcement. The strength indicators of concrete beams with hybrid reinforcement were obtained and analyzed. The test results showed that the strength of beams with hybrid reinforcement increased in comparison with beams of the control series and was at the level of beams reinforced with basalt-plastic reinforcement. At the same time, the deflections and crack width of the beams decreased.Conclusion. The use of hybrid reinforcement makes it possible to increase the bearing capacity of concrete beams, depending on the percentage of reinforcement in the section. The determining factors for the strength of beams with hybrid reinforcement are the strength of the concrete in the compressed zone and the percentage of section reinforcement. The optimal percentage of the ratio of metal and basalt reinforcement in concrete beams with hybrid reinforcement is 60 % / 40 %.Keywords:beams with hybrid reinforcement, basaltoplastic reinforcement, steel reinforcement, strength, deformability.


2021 ◽  
Vol 266 ◽  
pp. 01022
Author(s):  
Z.A. Besheryan ◽  
I.F. Kantemirov

The development of Russian fuel and energy complex in the short term is connected with the development of new hydrocarbon field in the permafrost zone and the need to build Arctic pipelines north of the 60th parallel. The ground-based structural scheme of pipeline laying is the most optimal while constructing trunk pipelines in permafrost areas in the Arctic and subarctic latitudes. The actual operating conditions of these systems are insufficiently studied. The above-ground pipeline in permafrost is in an complex stress-strain state. This study presents the results of the assessment of the stress-strain state of linearly extended above-ground pipelines at different compensation sections (triangular compensator; trapezoidal compensator; U-shaped compensator) under actual operating conditions. Using the finite element method on mathematical models, the dependences of the transverse displacements of the pipeline on movable supports and stresses arising in dangerous sections of the typical pipeline section during self-compensation of deformations on the variable design parameters of the system for various load combinations were established (the simulation was carried out in the ANSYS software package).


2018 ◽  
Vol 931 ◽  
pp. 60-65 ◽  
Author(s):  
Aleksey N. Beskopylny ◽  
Elena E. Kadomtseva ◽  
Grigory P. Strelnikov

In this paper, we consider the influence of the conditions for fixing a wavy plate lying on an elastic foundation on its stressed-deformed state. The profiled plates are widely used in construction practice as fencing structures, for siding works, for roofing and others. The stress-strain state of the wavy plates varies depending on geometry, materials mechanical properties, foundation characteristics and boundary condition. Steel with polymer coatings, which make the sheets a decorative material, is increasingly used in individual and low-rise buildings. The elastic foundation is considered as Winkler base, so we suppose that the reaction of the base is directly proportional to the deflection of the plate at each point. The Bubnov-Galerkin method is used to determine the stress-strain state of the plate. To solve the problem, we use special orthogonal Legendre polynomials satisfying the boundary conditions: simply supported and clamped edges. The results of the calculations were compared for different types of fixation.


2018 ◽  
Vol 944 ◽  
pp. 012104 ◽  
Author(s):  
A G Serebrennikova ◽  
E P Nikolaeva ◽  
A V Savilov ◽  
S A Timofeev ◽  
A S Pyatykh

Author(s):  
Nartmir V. Khanov ◽  
Fedor A. Pashchenko

Relevance. The lower retaining walls of the water intake of the Zagorskaya PSPP perform the important function of protecting the pressure water conduits from the collapse of the soil massif. Two of them (LN-2 and LN-3) were reinforced with anchor rods. Considering the long period of operation (more than 25 years), certain deviations in the work during examinations and field observations were revealed. So, on the front face of the walls, extended horizontal cracks were recorded (opening of horizontal interblock joints and the emergence of secondary oblique cracks on the front surface of the walls). To carry out computational studies of the stress-strain state of the downstream retaining walls was required. The purpose of the work was to determine the stress-strain state of the lower retaining walls of the water intake of the Zagorskaya PSPP taking into account the opening of interblock joints and the formation of secondary oblique cracks. Methods. Computational studies of the stress-strain state of retaining walls were carried out within the framework of the method of numerical modeling of reinforced concrete structures of hydraulic structures based on finite element models. In finite element models, structural features of retaining walls were reproduced, including anchor rods, horizontal interblock joints, actual reinforcement, secondary oblique cracks. Results. The stress-strain state of the retaining walls was obtained. The stresses in the longitudinal and transverse reinforcement were determined, including when the structure was changed due to anchor rods. In horizontally transverse reinforcement, tensile stresses exceeding the yield point are recorded. It took the development of measures to strengthen the lower retaining walls.


2018 ◽  
Vol 245 ◽  
pp. 08006
Author(s):  
Egor Kanaev ◽  
Daria Demidova ◽  
Sergey Zimin

This paper presents the results of a study of the stress-strain state of a geodesic dome covering the planetarium designed in the city of Nizhny Novgorod. Four design schemes were created in the SCAD with different types of node modeling. A comparative analysis of the effect of the strain capacity of the “BrGTU” type unit on the stress-strain state of the dome cover has been carried out. The results are obtained on the change in the displacements of the structure nodes and internal forces in the dome bars, with rigid and hinged mates. The option of increasing the diameter of high-strength bolts to reduce the overall deformability of the system is considered. On the basis of the obtained results, it was concluded that it is necessary to take into account the strain capacity of the semirigid connections when designing mesh steel domes.


Sign in / Sign up

Export Citation Format

Share Document