scholarly journals A* pathfinding algorithm modification for a 3D engine

2019 ◽  
Vol 252 ◽  
pp. 03007
Author(s):  
Jakub Smołka ◽  
Kamil Miszta ◽  
Maria Skublewska-Paszkowska ◽  
Edyta Łukasik

Frequently the quality of a path returned by a pathfinding algorithm is more important than the performance of that algorithm. This paper presents a new algorithm, based on A*, which is better suited for use in 3D game engines. The modification was evaluated by a series of comparative tests. The standard A* algorithm was used as a benchmark in the comparisons. The changes in the algorithm consist in using a different heuristic, adding vertex penalties, and post-processing of the path. A custom-built 3D graphics engine was used as the test environment. The paths generated by the new algorithm are a more natural choice for humans than the ones selected by the standard A* algorithm.

Author(s):  
Radhika Theagarajan ◽  
Shubham Nimbkar ◽  
Jeyan Arthur Moses ◽  
Chinnaswamy Anandharamakrishnan

2001 ◽  
Vol 1 (4) ◽  
pp. 282-290 ◽  
Author(s):  
F. C. Langbein ◽  
B. I. Mills ◽  
A. D. Marshall ◽  
R. R. Martin

Current reverse engineering systems can generate boundary representation (B-rep) models from 3D range data. Such models suffer from inaccuracies caused by noise in the input data and algorithms. The quality of reverse engineered geometric models can be improved by finding candidate shape regularities in such a model, and constraining the model to meet a suitable subset of them, in a post-processing step called beautification. This paper discusses algorithms to detect such approximate regularities in terms of similarities between feature objects describing properties of faces, edges and vertices, and small groups of these elements in a B-rep model with only planar, spherical, cylindrical, conical and toroidal faces. For each group of similar feature objects they also seek special feature objects which may represent the group, e.g. an integer value which approximates the radius of similar cylinders. Experiments show that the regularities found by the algorithms include the desired regularities as well as spurious regularities, which can be limited by an appropriate choice of tolerances.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Krassen Stefanov ◽  
Atanas Georgiev ◽  
Alexander Grigorov ◽  
Boyan Bontchev ◽  
Pavel Boytchev ◽  
...  

This paper presents the architecture of the RAGE repository, which is a unique and dedicated infrastructure that provides access to a wide variety of advanced technology components for applied game development. The RAGE project, which is the principal Horizon2020 research and innovation project on applied gaming, develops up to three dozens of software components (RAGE software assets) that are reusable across a wide diversity of game engines, game platforms and programming languages. The RAGE repository provides storage space for assets and their artefacts and is designed as an asset life-cycle management system for defining, publishing, updating, searching and packaging for distribution of these assets. It will be embedded in a social platform for asset developers and other users. A dedicated Asset Repository Manager provides the main functionality of the repository and its integration with other systems. Tools supporting the Asset Manager are presented and discussed. When the RAGE repository is in full operation, applied game developers will be able to easily enhance the quality of their games by including selected advanced game software assets. Making available the RAGE repository system and its variety of software assets aims to enhance the coherence and decisiveness of the applied game industry.


Author(s):  
Moh. Zikky

Shortest pathfinding problem has become a populer issue in Game’s Artificial Intelligent (AI). This paper discussed the effective way to optimize the shortest pathfinding problem, namely Navigation Mesh (NavMesh). This method is very interesting because it has a large area of implementation, especially in games world. In this paper, NavMesh was implemented by using A* (A star) algorithm and examined in Unity 3D game engine. A* was an effective algorithm in shortest pathfinding problem because its optimization was made with effective tracing using segmentation line. Pac-Man game was chosen as the example of the shortest pathfinding by using NavMesh in Unity 3D. A* algorithm was implemented on the enemies of Pac-Man (three ghosts),  which path was designed by using NavMesh concept. Thus, the movement of ghosts in catching Pac-Man was the result of this review of the effectiveness of this concept. In further research, this method could be implemented on several optimization programmes, such as Geographic Information System (GIS), robotics, and statistics.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Álvaro Garcia ◽  
Maria De Lourdes Melo Guedes Alcoforado ◽  
Francisco Madeiro ◽  
Valdemar Cardoso Da Rocha Jr.

This paper investigates the transmission of grey scale images encoded with polar codes and de-coded with successive cancellation list (SCL) decoders in the presence of additive white Gaussian noise. Po-lar codes seem a natural choice for this application be-cause of their error-correction efficiency combined with fast decoding. Computer simulations are carried out for evaluating the influence of different code block lengths in the quality of the decoded images. At the encoder a default polar code construction is used in combination with binary phase shift keying modulation. The results are compared with those obtained by using the clas-sic successive cancellation (SC) decoding introduced by Arikan. The quality of the reconstructed images is assessed by using peak signal to noise ratio (PSNR) and the structural similarity (SSIM) index. Curves of PSNR and SSIM versus code block length are presented il-lustrating the improvement in performance of SCL in comparison with SC.


2021 ◽  
Vol 893 (1) ◽  
pp. 012028
Author(s):  
Robi Muharsyah ◽  
Dian Nur Ratri ◽  
Damiana Fitria Kussatiti

Abstract Prediction of Sea Surface Temperature (SST) in Niño3.4 region (170 W - 120 W; 5S - 5N) is important as a valuable indicator to identify El Niño Southern Oscillation (ENSO), i.e., El Niño, La Niña, and Neutral condition for coming months. More accurate prediction Niño3.4 SST can be used to determine the response of ENSO phenomenon to rainfall over Indonesia region. SST predictions are routinely released by meteorological institutions such as the European Center for Medium-Range Weather Forecasts (ECMWF). However, SST predictions from the direct output (RAW) of global models such as ECMWF seasonal forecast is suffering from bias that affects the poor quality of SST predictions. As a result, it also increases the potential errors in predicting the ENSO events. This study uses SST from the output Ensemble Prediction System (EPS) of ECMWF seasonal forecast, namely SEAS5. SEAS5 SST is downloaded from The Copernicus Climate Change Service (C3S) for period 1993-2020. One value representing SST over Niño3.4 region is calculated for each lead-time (LT), LT0-LT6. Bayesian Model Averaging (BMA) is selected as one of the post-processing methods to improve the prediction quality of SEAS5-RAW. The advantage of BMA over other post-processing methods is its ability to quantify the uncertainty in EPS, which is expressed as probability density function (PDF) predictive. It was found that the BMA calibration process reaches optimal performance using 160 months training window. The result show, prediction quality of Niño3.4 SST of BMA output is superior to SEAS5-RAW, especially for LT0, LT1, and LT2. In term deterministic prediction, BMA shows a lower Root Mean Square Error (RMSE), higher Proportion of Correct (PC). In term probabilistic prediction, the error rate of BMA, which is showed by the Brier Score is lower than RAW. Moreover, BMA shows a good ability to discriminating ENSO events which indicates by AUC ROC close to a perfect score.


2021 ◽  
Vol 1027 ◽  
pp. 136-140
Author(s):  
Sze Yi Mak ◽  
Kwong Leong Tam ◽  
Ching Hang Bob Yung ◽  
Wing Fung Edmond Yau

Metal additive manufacturing has found broad applications in diverse disciplines. Post processing to homogenize and improve surface finishing remains a critical challenge to additive manufacturing. We propose a novel one-stop solution of adopting hybrid metal 3D printing to streamlining the additive manufacturing workflow as well as to improve surface roughness quality of selective interior surface of the printed parts. This work has great potential in medical and aerospace industries where complicated and high-precision additive manufacturing is anticipated.


Sign in / Sign up

Export Citation Format

Share Document