scholarly journals Green envelope as an architectural strategy for energy efficiency in a library building

2019 ◽  
Vol 266 ◽  
pp. 01004 ◽  
Author(s):  
Azlan Ariff Ali Ariff ◽  
Sabarinah Sheikh Ahmad ◽  
Mohd Aljefri Hussin

In the context of Malaysian tropical climate, green envelope functions to provide satisfying indoor environment and achieve the best performance with minimal energy consumption. Buildings that rely on air-conditioning to improve thermal comfort could benefit from green envelope potentials. Hence, the objective of this paper is to explore the impacts of various types of green envelope towards reducing the energy consumption of a two-storey library building. The methodology approach is quantitative and data are collected through building simulation using Revit Building Information Modelling (BIM). Parameters studied are building orientation, wall insulation, envelope materials, and façade treatment. Results showed that different types of green envelope posed different impact on energy consumption of the library and double glazed windows contribute the most significant reduction of energy consumption. The study establishes the contribution of green envelope and advocates the use of building simulation as research methodology, as it helps to improve envelope design, and to predict the possible outcomes of design alternatives.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Hemalattha ◽  
R. Vidjeapriya

PurposeThis study aims to develop a framework for optimizing the spatial requirements of the equipment in a construction site using a geographic information system (GIS).Design/methodology/approachAn ongoing construction project, an existing thermal powerplant in India, is considered to be the case study, and the corresponding construction activities were scheduled. The equipment spaces were defined for the scheduled activities in building information modelling (BIM), which was further imported to GIS to define the topology rules, validate and optimize the spatial requirements. The BIM simulates the indoor environment, which includes the actual structure being constructed, and the GIS helps in modelling the outdoor environment, which includes the existing structures, temporary facilitates, topography of the site, etc.; thus, this study incorporates the knowledge of BIM in a geospatial environment to obtain optimized equipment spaces for various activities.FindingsSpace in construction projects is to be considered as a resource as well as a constraint, which is to be modelled and planned according to the requirements. The integration of BIM and GIS for equipment space planning will enable precise identification of the errors in the equipment spaces defined and also result in fewer errors as possible. The integration has also eased the process of assigning the topology rules and validating the same, which otherwise is a tedious process.Originality/valueThe workspace for each activity will include the space of the equipment. But, in most of the previous works of workspace planning, only the labour space is considered, and the conflicts and congestions occurring due to the equipment were neglected. The planning of equipment spaces cannot be done based only on the indoor environment; it has to be carried out by considering the surroundings and topography of the site, which have not been researched extensively despite its importance.


2019 ◽  
pp. 560-570
Author(s):  
Liangxiu Han ◽  
Haşim Altan ◽  
Masa Noguchi

Understanding how occupants manage their energy use in homes and how their behaviour influence household energy consumption in domestic environments has been challenging. There seems to be several major factors contributing towards achieving optimal performance in designing, constructing and maintaining a sustainable home using Building Information Modelling (BIM) based approaches. This study focuses on investigating the relationship between user behaviour and energy consumption through the in-depth analysis of energy usage patterns collected from a selected affordable terraced house in Prestwick, Scotland, as an initial attempt towards the future integration with BIM systems. For the purpose of this feasibility study, indoor temperature, relative humidity and CO2 sensors, as well as a gas-electricity-water utility monitor were installed in the selected home occupied by a working class nuclear household. The study encompasses the analyses of energy usage patterns in their daily life. It is confirmed that domestic energy consumption is affected by the occupants' presence and behaviour. Moreover, this paper discusses a possibility that the energy prediction approach taken in this study could work alongside BIM systems applied for housing suppliers' design decision-making on the delivery of energy efficient homes of the future.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8487
Author(s):  
Serdar Durdyev ◽  
Gholamreza Dehdasht ◽  
Saeed Reza Mohandes ◽  
David J. Edwards

In recent years, many researchers across the world have addressed the implementation of Building Information Modelling (BIM) in the energy assessment of the built environment. However, several potential issues still need to be resolved in order to utilise the benefits provided by BIM to a maximum degree. To fill this gap, a systematic literature review is conducted in this study to critically investigate the utilisation of BIM tools in energy assessment. To achieve the above-mentioned objective, after shortlisting the relevant papers published hitherto, using keyword searching, a systematic review was undertaken, including the application of BIM in the contexts of different countries, types of BIM tools, BIM and Life Cycle Assessment (LCA) integration, energy affiliations, stakeholders’ involvement and their roles, uncertainty, and sensitivity analysis. The outcomes show the most widely used and effective BIM tools in different types of construction projects in various countries. The review of the literature clearly shows that BIM tools can effectively be used in the assessment of energy performance of buildings. The article gives insight to engineers, architecture, and decision makers to carefully select appropriate BIM tools in terms of energy assessment.


2018 ◽  
Vol 29 (3) ◽  
pp. 355-371 ◽  
Author(s):  
Jin-Kook Lee ◽  
Jaeyoung Shin ◽  
Yeunsook Lee

In retrofit-purposed projects such as building renovations, the early decision-support mechanism to determine an optimistic circulation plan and spatial allocation is strongly required for architects, owners and residents. In this paper, we introduce such a case study based on the building information modelling-enabled approach that has been explored using an actual project at Yeongwol, South Korea for resolving diverse residential types, including elderly housing units. The objective of this paper is to demonstrate an actual analysis of building remodelling design alternatives regarding indoor circulation and spatial allocation problems, especially considering elderly housing units. Another significant feature of this paper is a quantitative and explicit approach to the indoor walkability index using building information modelling. After acquiring indoor circulation data, such as metric distances between rooms, number of turns, spatial depth, vertical access, or any other BIM-enabled data, an appropriate and teleological weighting function was applied to determine the indoor walkability index. The usefulness of the approach was demonstrated in this paper, based on a Yeongwol project. building information modelling-enabled data provided prompt and reliable quantitative analysis results as soon as various design alternatives appear within the given timeframe to resolve circulation and spatial allocation problems for remodelling homes for the elderly.


The use of Building Information Modelling (BIM) has been widely practised. In this paper, the method of Terrestrial Laser Scanning (TLS) and 3D modelling is done before analyse using BIM. This study aims to analyse the energy consumption of PMU building by using BIM in order to have a better designed project as well as to lower risk and better predictability of outcomes. It discusses studies integrated with the design method, on the use of Building Information Modeling (BIM) to build performance simulations. As for the outcome, cooling load and energy consumption analysis are presented in this study.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 22 ◽  
Author(s):  
Bárbara Torregrosa-Jaime ◽  
Pedro J. Martínez ◽  
Benjamín González ◽  
Gaspar Payá-Ballester

Variable refrigerant flow (VRF) systems are one possible tool to meet the objective that all new buildings must be nearly zero-energy buildings by 31 December 2020. Building Information Modelling (BIM) is a methodology that centralizes building construction project information in a digital model promoting collaboration between all its agents. The objectives of this work were to develop a more precise model of the VRF system than the one available in EnergyPlus version 8.9 (US Department of Energy) and to study the operation of this system in an office building under different climates by implementing the building energy simulation in an Open BIM workflow. The percentage deviation between the estimation of the VRF energy consumption with the standard and the new model was 6.91% and 1.59% for cooling and heating respectively in the case of Barcelona and 3.27% and 0.97% respectively in the case of Madrid. The energy performance class of the analysed building was A for each climatic zone. The primary energy consumption of the office building equipped with the VRF system was of 65.8 kWh/(m2·y) for the Mediterranean climate of Barcelona and 72.4 kWh/(m2·y) for the Continental climate of Madrid.


2015 ◽  
Vol 4 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Liangxiu Han ◽  
Haşim Altan ◽  
Masa Noguchi

Understanding how occupants manage their energy use in homes and how their behaviour influence household energy consumption in domestic environments has been challenging. There seems to be several major factors contributing towards achieving optimal performance in designing, constructing and maintaining a sustainable home using Building Information Modelling (BIM) based approaches. This study focuses on investigating the relationship between user behaviour and energy consumption through the in-depth analysis of energy usage patterns collected from a selected affordable terraced house in Prestwick, Scotland, as an initial attempt towards the future integration with BIM systems. For the purpose of this feasibility study, indoor temperature, relative humidity and CO2 sensors, as well as a gas-electricity-water utility monitor were installed in the selected home occupied by a working class nuclear household. The study encompasses the analyses of energy usage patterns in their daily life. It is confirmed that domestic energy consumption is affected by the occupants' presence and behaviour. Moreover, this paper discusses a possibility that the energy prediction approach taken in this study could work alongside BIM systems applied for housing suppliers' design decision-making on the delivery of energy efficient homes of the future.


2020 ◽  
Vol 14 (1) ◽  
pp. 336-349
Author(s):  
Vera Durão ◽  
António Aguiar Costa ◽  
José Dinis Silvestre ◽  
Ricardo Mateus ◽  
Ruben Santos ◽  
...  

Background: In the last years, Building Information Modelling (BIM) and Life Cycle Assessment (LCA) have been integrated to support the pursuit of sustainability in the built environment. However, the integration of environmental information with different specificity and reliability requirements on distinct Levels of Development (LOD) of BIM objects was not yet exploited considering several environmental impact categories. Objective: The objective of this paper is to discuss the complexity and depth of LCA information needed for BIM objects, considering different LOD, and to propose a parametrisation of environmental information be included in BIM objects according to their LODs. Methods: A literature review on LCA methodology, sources of LCA information, integration of LCA in BIM, and LOD of BIM objects was initially performed, followed by a detailed characterisation of the different types of sources of LCA information to include in BIM models. These steps contributed to the development of the proposed parametrisation of environmental data. Results: A parametrisation of environmental information to be included in BIM objects was developed. This parametrisation considered the degree at which the element’s information has been specified (LOD) and the respective detail and reliability of the environmental information to include. Conclusion: A new approach is proposed that allows an evolutive integration of environmental information in BIM objects according to their growing LODs.


Sign in / Sign up

Export Citation Format

Share Document