scholarly journals Estimating the parameters of the seabed using the spatial characteristics of ocean ambient noise

2019 ◽  
Vol 283 ◽  
pp. 08004
Author(s):  
He Li ◽  
Xiniyi Guo ◽  
Li Ma ◽  
Guoli Song

When solving traditional underwater problems, the boundary condition is always used to calculate the sound field. In practice, however, it is hard to get the boundary conditions of the seabed. So geoacoustics inversion is needed to acquire the parameters of the seabed. In this paper, a method estimating seabed parameters by using the spatial characteristics of ocean ambient noise is demonstrated without using matched-field processing. For the reason of the limit of the resolution of conventional beamforming (CBF), a method of synthetic array processing (SAP) is used because of some characters of cross-spectrum density matrix (CSDM). The result shows that the method of synthetic array processing enhanced the resolution of critical angle to some degree. By comparing the true bottomloss calculated by OASR, the result of traditional beamforming and the synthetic array processing, the result of synthetic array processing is closer to the true bottomloss than the result of traditional beamforming. After ensuring a range of critical angle, the sound speed of the seabed can be estimated by using Snell law. And then, an experimental data collected in Qingdao, China, 2016 is used to prove the validity of the method of synthetic array processing and estimate the local seabed parameters.

2018 ◽  
Vol 183 ◽  
pp. 01054
Author(s):  
Elisha Rejovitzky

The design of protective structures often requires numerical modeling of shock-wave propagation in the surrounding soils. Properties of the soil such as grain-grading and water-fraction may vary spatially around a structure and among different sites. To better understand how these properties affect wave propagation we study how the meso-structure of soils affects their equation of state (EOS). In this work we present a meso-mechanical model for granular materials based on a simple representation of the grains as solid spheres. Grain-grading is prescribed, and a packing algorithm is used to obtain periodic grain morphologies of tightly packed randomly distributed spheres. The model is calibrated by using experimental data of sand compaction and sound-speed measurements from the literature. We study the effects of graingrading and show that the pressures at low strains exhibit high sensitivity to the level of connectivity between grains. At high strains, the EOS of the bulk material of the grains dominates the behavior of the EOS of the granular material.


2014 ◽  
Vol 577 ◽  
pp. 1198-1201
Author(s):  
Zhang Liang ◽  
Chun Xia Meng ◽  
Hai Tao Xiao

The physical characteristics are compared between shallow and deep water, in physics and acoustics, respectively. There is a specific sound speed profile in deep water, which is different from which in shallow water, resulting in different sound propagation law between them. In this paper, the sound field distributions are simulated under respective typical sound speed profile. The color figures of sound intensity are obtained, in which the horizontal ordinate is distance, and the vertical ordinate is depth. Then we can get some important characteristics of sound propagation. The results show that the seabed boundary is an important influence on sound propagation in shallow water, and sound propagation loss in deep water convergent zone is visibly less than which in spherical wave spreading. We can realize the remote probing using the acoustic phenomenon.


2018 ◽  
Vol 180 ◽  
pp. 02049
Author(s):  
Jan Kůrečka ◽  
Vladimír Habán ◽  
Daniel Himr

Bulk viscosity is an important factor in the damping properties of fluid systems and exhibits frequency dependent behaviour. A comparison between modal analysis in ANSYS Acoustics, custom code and experimental data is presented in this paper. The measured system consists of closed ended water-filled steel pipes of different lengths. The influence of a pipe wall, flanges on both ends and longitudinal waves in the structural part were included in measurement evaluation. Therefore, the obtained values of sound speed and bulk viscosity are parameters of the fluid. A numerical simulation was carried out only using fluid volume in a range of bulk viscosity. Damping characteristics in this range were compared to measured values. The results show a significant influence of sound speed and subsequently, the use of sound speed value regressed from experimental data yields a better fit between the measurement and the computation.


2005 ◽  
Vol 127 (6) ◽  
pp. 542-546 ◽  
Author(s):  
Quan Wan ◽  
W. K. Jiang

The cyclostationary near field acoustic holography (NAH) technique is proposed to overcome the limitations of the current NAH in analyzing cyclostationary sound field. The proposed technique adopts the cyclic spectrum density as the reconstructed physical quantity, instead of the spectrum of sound pressure. Moreover, introducing the principal component analysis into the technique, a partial source decomposition procedure is suggested to decompose the sound field radiated by multiple sound sources into some incoherent partial fields. More information about cyclostationary sound field can be shown clearly on the hologram of the proposed technique than NAH can, which is validated by the simulation results.


1998 ◽  
Vol 06 (01n02) ◽  
pp. 269-289 ◽  
Author(s):  
Purnima Ratilal ◽  
Peter Gerstoft ◽  
Joo Thiam Goh ◽  
Keng Pong Yeo

Estimation of the integral geoacoustic properties of the sea floor based on real data drawn from a shallow water site is presented. Two independent inversion schemes are used to deduce these properties. The first is matched-field processing of the pressure field on a vertical line array due to a projected source. The second approach is the inversion of ambient noise on a vertical array. Matched-field processing has shown to be successful in the inversion of high quality field data. Here, we show that it is also feasible with a more practical and less expensive data collection scheme. It will also be shown that low frequency inversion is more robust to variation and fluctuation in the propagating medium, whereas high frequencies are more sensitive to mismatches in a varying medium. A comparison is made of the estimates obtained from the two techniques and also with available historical data of the trial site.


Naturally generated ambient noise in the ocean is created by breaking waves, spray and precipitation. Each of these mechanisms produces a pulse of sound that propagates down into the depths of the ocean, and the superposition of all such pulses from across the whole sea surface constitutes the ambient noise field. Since the noise is a stochastic phenomenon, its properties are described in terms of statistical quantities, the most useful being the power spectral density at a point and the cross-spectral density between two points in the field. If these second-order statistical measures are independent of absolute position, the noise field is said to be spatially homogeneous. In the rare case of an isovelocity, deep ocean, the noise field at depths greater than a wavelength or so beneath the surface is spatially homogeneous, consisting of a random superposition of plane waves. A non-uniform sound speed profile, however, introduces wave-front curvature which modifies the situation significantly. the noise exhibits strong spatial homogeneity over length scales that are comparable with the apertures of typical acoustic arrays. Apart from the implications with regard to array performance, this is important in connection with certain aspects of acoustical oceanography, whereby information on the oceanographic environment is extracted from the noise field (Buckingham et al. 1992). Such information is accessible only if the structure of the noise field is well understood. The problem lies in determining the spatial and spectral properties of the noise in a profile. Fundamental to the noise analysis is the Green’s function for the channel, which characterizes the propagation conditions; and yet for most non-uniform sound speed profiles the analysis of the Green's function is intractable. However, there is one profile, designated the inverse-square profile, for which a complete, exact solution for the field has been developed (Buckingham 1991). The inverse-square profile is monotonic increasing with depth, giving rise to upward refractive propagation. Such a profile is found in several ocean environments: the polar oceans, where the temperature and hence the sound speed show a minimum at the surface; the mixed surface layer, extending to a depth of order 100 m in the open ocean; and the ocean-surface bubble layer, occupying the first ten metres or so beneath the surface. An analysis of the noise field in the presence of an inverse square profile, based on the solution for the Green’s function, shows that the cross-spectral density of the noise in the vertical consists of three components: a normal mode sum, representing noise originating largely in distant sources; a direct path contribution, from sources that are more or less overhead; and a near-surface term that is negligible at depths greater than a wavelength. In the theoretical noise spectrum , the normal mode and direct path components are prominent, dominating, respectively, at low and high frequencies. The cross-over frequency depends on the parameters of the profile and attenuation in the medium, but for polar oceans is in the region of several hundred hertz. At a much lower frequency, around 10 Hz, where the polar profile ceases to support normal mode propagation, a minimum appears in the theoretical spectrum . This is the result of a very rapid fall off in the normal mode component of the noise and a slow rise of the direct path component with decreasing frequency. Each of the three components of the vertical cross-spectral density exhibits strong spatial inhomogeneity. This is exemplified by the dramatic dependence of the cross-spectrum on both the mean depth of the sensors and frequency. Although such behaviour adds complexity to the structure of the noise field, this could be advantageous since it allows the possibility of performing inversions on noise cross-spectral data to determine properties of the medium. Recent measurements of low-frequency (50-2000 Hz) and very low-frequency (5-200 Hz) ambient noise spectra in the marginal ice zone of the Greenland Sea, where the sound speed profile is of the inverse-square form, have been compared with the predictions of the new noise theory. There is evidence in the measured spectra that both the normal mode and direct path components of the noise are present with the predicted relative levels. A minimum around 10 Hz is a ubiquitous feature of the VLF spectra, and the LF spectra show a change of slope close to 400 Hz, both of which are in accord with the theory. Along the ice edge a highly non-uniform (spatial) distribution of energetic sources is known to be present, whose effects in the observed spectra are consistent with arguments developed from the inverse-square noise analysis.


Sign in / Sign up

Export Citation Format

Share Document