scholarly journals Improvements on Grasping the Object with Irregular Shapes

2019 ◽  
Vol 290 ◽  
pp. 04010
Author(s):  
Alina Rodica Spanu ◽  
George Dragoi ◽  
Iolanda Panait

The image processing technique has been rapidly developed during the last years due to the improvement of computer science and applied algorithms. The paper aims to analyse the method for designing the active surfaces of the gripper suitable for the object with irregular shapes. Concerning these particularities, we have taken the object picture in order to process it. By using the appropriate algorithms, the results were transferred in the three dimensional modelling software, so that the fingers were designed according to the object shapes. Finally, they have been manufactured using the 3D printer and the technical performances were analysed.

2019 ◽  
Vol 109 (2) ◽  
pp. 98-107
Author(s):  
Kit-lun Yick ◽  
Wai-ting Lo ◽  
Sun-pui Ng ◽  
Joanne Yip ◽  
Hung-hei Kwan ◽  
...  

Background: Accurate representation of the insole geometry is crucial for the development and performance evaluation of foot orthoses designed to redistribute plantar pressure, especially for diabetic patients. Methods: Considering the limitations in the type of equipment and space available in clinical practices, this study adopted a simple portable three-dimensional (3-D) desktop scanner to evaluate the 3-D geometry of an orthotic insole and the corresponding deformities after the insole has been worn. The shape of the insole structure along horizontal cross sections is defined with 3-D scanning and image processing. Accompanied by an in-shoe pressure measurement system, plantar pressure distribution in four foot regions (hallux, metatarsal heads, midfoot, and heel) is analyzed and evaluated for insole deformity. Results: Insole deformities are quantified across the four foot regions. The hallux region tends to show the greatest changes in shape geometry (17%–50%) compared with the other foot regions after 2 months of insole wear. As a result of insole deformities, plantar peak pressures change considerably (–4.3% to +69.5%) during the course of treatment. Conclusions: Changes in shape geometry of the insoles could be objectively quantified with 3-D scanning techniques and image processing. This investigation finds that, in general, the design of orthotic insoles may not be adequate for diabetic individuals with similar foot problems. The drastic changes in the insole shape geometry and cross-sectional areas during orthotic treatment may reduce insole fit and conformity. An inadequate insole design may also affect plantar pressure reduction. The approach proposed herein, therefore, allows for objective quantification of insole shape geometry, which results in effective and optimal orthotic treatment.


Author(s):  
Naureen Fathima

Abstract: Glaucoma is a disease that relates to the vision of human eye,Glaucoma is a disease that affects the human eye's vision. This sickness is regarded as an irreversible condition that causes eyesight degeneration. One of the most common causes of lifelong blindness is glaucoma in persons over the age of 40. Because of its trade-off between portability, size, and cost, fundus imaging is the most often utilised screening tool for glaucoma detection. Fundus imaging is a two-dimensional (2D) depiction of the three-dimensional (3D), semitransparent retinal tissues projected on to the imaging plane using reflected light. The idea plane that depicts the physical display screen through which a user perceives a virtual 3D scene is referred to as the "image plane”. The bulk of current algorithms for autonomous glaucoma assessment using fundus images rely on handcrafted segmentation-based features, which are influenced by the segmentation method used and the retrieved features. Convolutional neural networks (CNNs) are known for, among other things, their ability to learn highly discriminative features from raw pixel intensities. This work describes a computational technique for detecting glaucoma automatically. The major goal is to use a "image processing technique" to diagnose glaucoma using a fundus image as input. It trains datasets using a convolutional neural network (CNN). The Watershed algorithm is used for segmentation and is the most widely used technique in image processing. The following image processing processes are performed: region of interest, morphological procedures, and segmentation. This technique can be used to determine whether or not a person has Glaucoma. Keywords: Recommender system, item-based collaborative filtering, Natural Language Processing, Deep learning.


Author(s):  
Satoshi Fujita ◽  
Osamu Furuya ◽  
Hidetaka Hayashi

In recent years, the importance of the fracturing test using the full-scale model is recognized in order to upgrade an earthquake resistant design. It is, moreover, important to develop a new measurement method which can measure a complex three-dimensional behavior in such fracturing test. This study has been doing research and development of three-dimensional measurement method using an image processing technique for a measurement of dynamic displacement in shake table test without any contact. This measurement system is a very convenient system because it can measure the three-dimensional dynamic displacement in the simple experimental condition that the several makers are only attached to the surface of an experimental structure. The system therefore is the most suitable measurement system for an evaluation of complex three-dimensional behavior of test model. The fundamental hardware and software for the measurement system has been constructed until now. The fundamental dynamic measurement accuracy and effectiveness of the measurement system has been also confirmed from several shake table tests. This paper describes the measurement results of shake table test using historical wooden structure and actual wooden house model in the largest shake table facilities at E-Defense, and evaluates synthetic measurement performance of the developed measurement system.


Author(s):  
Satoshi Fujita ◽  
Osamu Furuya ◽  
Hiroki Mizuno

In recent years, the importance of the fracturing test using the full-scale model is recognized in order to upgrade an earthquake resistant design. It is, moreover, important to develop a new measurement method which can measure a complex three-dimensional behaviour in such fracturing test. This study has been doing research and development of three-dimensional measurement method using an image processing technique for a measurement of dynamic displacement in shake table test without any contact. This measurement system is a very convenient system because it can measure the three-dimensional dynamic displacement in the simple experimental condition that the several makers are only attached to the surface of an experimental structure. The system therefore is the most suitable measurement system for an evaluation of complex 3-dimensional behavior of test model. Fundamental hardware and software for the measurement system has been constructed until now. The fundamental dynamic measurement accuracy and effectiveness of the measurement system has been also confirmed from several shake table tests. This paper describes the examination of the upgrading for the measurement accuracy in actual fracturing test. Moreover, the shake table test results using actual wooden house model were also indicated.


Sign in / Sign up

Export Citation Format

Share Document