scholarly journals Deep Generative Model with Supervised Latent Space for Text Classification

2019 ◽  
Vol 292 ◽  
pp. 03009
Author(s):  
Maciej Jankowski

Recent advances in applying deep neural networks to Bayesian Modelling, sparked resurgence of in- terest in Variational Methods. Notably, the main contribution in this area is Reparametrization Trick introduced in [1] and [2]. VAE model [1], is unsupervised and therefore its application to classification is not optimal. In this work, we research the possibility to extend the model to supervised case. We first start with the model known as Supervised Variational Autoencoder that is researched in the literature in various forms [3] and [4]. We then modify objective function in such a way, that latent space can be better fitted to multiclass problem. Finally, we introduce a new method that uses information about classes to modify latent space, so it even better reflects differences between classes. All of this, will use only two dimensions. We will show, that mainstream classifiers applied to such a space, achieve significantly better performance than if applied to original datasets and VAE generated data. We also show, how our novel approach can be used to calculate better classification score, and how it can be used to generate data for a given class.

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


2019 ◽  
Author(s):  
David Beniaguev ◽  
Idan Segev ◽  
Michael London

AbstractWe introduce a novel approach to study neurons as sophisticated I/O information processing units by utilizing recent advances in the field of machine learning. We trained deep neural networks (DNNs) to mimic the I/O behavior of a detailed nonlinear model of a layer 5 cortical pyramidal cell, receiving rich spatio-temporal patterns of input synapse activations. A Temporally Convolutional DNN (TCN) with seven layers was required to accurately, and very efficiently, capture the I/O of this neuron at the millisecond resolution. This complexity primarily arises from local NMDA-based nonlinear dendritic conductances. The weight matrices of the DNN provide new insights into the I/O function of cortical pyramidal neurons, and the approach presented can provide a systematic characterization of the functional complexity of different neuron types. Our results demonstrate that cortical neurons can be conceptualized as multi-layered “deep” processing units, implying that the cortical networks they form have a non-classical architecture and are potentially more computationally powerful than previously assumed.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Keyu Yang ◽  
Yunjun Gao ◽  
Lei Liang ◽  
Song Bian ◽  
Lu Chen ◽  
...  

Text classification is a fundamental task in content analysis. Nowadays, deep learning has demonstrated promising performance in text classification compared with shallow models. However, almost all the existing models do not take advantage of the wisdom of human beings to help text classification. Human beings are more intelligent and capable than machine learning models in terms of understanding and capturing the implicit semantic information from text. In this article, we try to take guidance from human beings to classify text. We propose Crowd-powered learning for Text Classification (CrowdTC for short). We design and post the questions on a crowdsourcing platform to extract keywords in text. Sampling and clustering techniques are utilized to reduce the cost of crowdsourcing. Also, we present an attention-based neural network and a hybrid neural network to incorporate the extracted keywords as human guidance into deep neural networks. Extensive experiments on public datasets confirm that CrowdTC improves the text classification accuracy of neural networks by using the crowd-powered keyword guidance.


Author(s):  
Fargana J. Abdullayeva

The paper proposes a method for predicting the workload of virtual machines in the cloud infrastructure. Reconstruction probabilities of variational autoencoders were used to provide the prediction. Reconstruction probability is a probability criterion that considers the variability in the distribution of variables. In the proposed approach, the values of the reconstruction probabilities of the variational autoencoder show the workload level of the virtual machines. The results of the experiments showed that variational autoencoders gave better results in predicting the workload of virtual machines compared to simple deep neural networks. The generative characteristics of the variational autoencoders determine the workload level by the data reconstruction.


2017 ◽  
Vol 23 (5) ◽  
pp. 322-327
Author(s):  
Hwiyeol Jo ◽  
Jin-Hwa Kim ◽  
Kyung-Min Kim ◽  
Jeong-Ho Chang ◽  
Jae-Hong Eom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document