CrowdTC: Crowd-powered Learning for Text Classification

2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Keyu Yang ◽  
Yunjun Gao ◽  
Lei Liang ◽  
Song Bian ◽  
Lu Chen ◽  
...  

Text classification is a fundamental task in content analysis. Nowadays, deep learning has demonstrated promising performance in text classification compared with shallow models. However, almost all the existing models do not take advantage of the wisdom of human beings to help text classification. Human beings are more intelligent and capable than machine learning models in terms of understanding and capturing the implicit semantic information from text. In this article, we try to take guidance from human beings to classify text. We propose Crowd-powered learning for Text Classification (CrowdTC for short). We design and post the questions on a crowdsourcing platform to extract keywords in text. Sampling and clustering techniques are utilized to reduce the cost of crowdsourcing. Also, we present an attention-based neural network and a hybrid neural network to incorporate the extracted keywords as human guidance into deep neural networks. Extensive experiments on public datasets confirm that CrowdTC improves the text classification accuracy of neural networks by using the crowd-powered keyword guidance.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhenyu Yang ◽  
Mingge Zhang ◽  
Guojing Liu ◽  
Mingyu Li

The recommendation method based on user sessions is mainly to model sessions as sequences in the assumption that user behaviors are independent and identically distributed, and then to use deep semantic information mining through Deep Neural Networks. Nevertheless, user behaviors may be a nonindependent intention at irregular points in time. For example, users may buy painkillers, books, or clothes for different reasons at different times. However, this has not been taken seriously in previous studies. Therefore, we propose a session recommendation method based on Neural Differential Equations in an attempt to predict user behavior forward or backward from any point in time. We used Ordinary Differential Equations to train the Graph Neural Network and could predict forward or backward at any point in time to model the user's nonindependent sessions. We tested for four real datasets and found that our model achieved the expected results and was superior to the existing session-based recommendations.


2020 ◽  
Vol 34 (07) ◽  
pp. 11229-11236
Author(s):  
Zhiwei Ke ◽  
Zhiwei Wen ◽  
Weicheng Xie ◽  
Yi Wang ◽  
Linlin Shen

Dropout regularization has been widely used in various deep neural networks to combat overfitting. It works by training a network to be more robust on information-degraded data points for better generalization. Conventional dropout and variants are often applied to individual hidden units in a layer to break up co-adaptations of feature detectors. In this paper, we propose an adaptive dropout to reduce the co-adaptations in a group-wise manner by coarse semantic information to improve feature discriminability. In particular, we showed that adjusting the dropout probability based on local feature densities can not only improve the classification performance significantly but also enhance the network robustness against adversarial examples in some cases. The proposed approach was evaluated in comparison with the baseline and several state-of-the-art adaptive dropouts over four public datasets of Fashion-MNIST, CIFAR-10, CIFAR-100 and SVHN.


2019 ◽  
Author(s):  
Guanyu Yang ◽  
Chuanxia Wang ◽  
Jian Yang ◽  
Yang Chen ◽  
Lijun Tang ◽  
...  

Abstract Background: Renal cancer is one of ten most common cancers in human beings. The laparoscopic partial nephrectomy (LPN) is an effective way to treat renal cancer. Localization and delineation of the renal tumor from pre-operative CT Angiography (CTA) is an important step for LPN surgery planning. Recently, with the development of deep neural networks in medical images, fully supervised deep neural networks can provide accurate pixel-wise organ and lesion segmentation. However, constructing the training dataset with manual labels consumes a lot of time. Methods: Therefore, in this work, we proposed a novel weakly-supervised convolutional neural network for renal tumor segmentation. A new three-stage training strategy was introduced to train a convolutional neural network, which includes group and weighted training phases. Results: We evaluated the proposed method on abdominal CT angiographic images of 200 patients. Extensive experimental results show that the proposed method achieves higher dice coefficient of 0.826 than the other two existing weakly-supervised deep neural networks. Furthermore, the segmentation performance is close to the fully supervised deep convolutional neural networks. Conclusions: The proposed strategy improves not only the efficiency of network training but also the precision of the segmentation.


2021 ◽  
Vol 11 (20) ◽  
pp. 9703
Author(s):  
Han-joon Kim ◽  
Pureum Lim

Most text classification systems use machine learning algorithms; among these, naïve Bayes and support vector machine algorithms adapted to handle text data afford reasonable performance. Recently, given developments in deep learning technology, several scholars have used deep neural networks (recurrent and convolutional neural networks) to improve text classification. However, deep learning-based text classification has not greatly improved performance compared to that of conventional algorithms. This is because a textual document is essentially expressed as a vector (only), albeit with word dimensions, which compromises the inherent semantic information, even if the vector is (appropriately) transformed to add conceptual information. To solve this `loss of term senses’ problem, we develop a concept-driven deep neural network based upon our semantic tensor space model. The semantic tensor used for text representation features a dependency between the term and the concept; we use this to develop three deep neural networks for text classification. We perform experiments using three standard document corpora, and we show that our proposed methods are superior to both traditional and more recent learning methods.


2019 ◽  
Vol 63 (7) ◽  
pp. 1031-1038
Author(s):  
Zongjie Ma ◽  
Abdul Sattar ◽  
Jun Zhou ◽  
Qingliang Chen ◽  
Kaile Su

Abstract Dropout has been proven to be an effective technique for regularizing and preventing the co-adaptation of neurons in deep neural networks (DNN). It randomly drops units with a probability of p during the training stage of DNN to avoid overfitting. The working mechanism of dropout can be interpreted as approximately and exponentially combining many different neural network architectures efficiently, leading to a powerful ensemble. In this work, we propose a novel diversification strategy for dropout, which aims at generating more different neural network architectures in less numbers of iterations. The dropped units in the last forward propagation will be marked. Then the selected units for dropping in the current forward propagation will be retained if they have been marked in the last forward propagation, i.e., we only mark the units from the last forward propagation. We call this new regularization scheme Tabu dropout, whose significance lies in that it does not have extra parameters compared with the standard dropout strategy and is computationally efficient as well. Experiments conducted on four public datasets show that Tabu dropout improves the performance of the standard dropout, yielding better generalization capability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Florian Stelzer ◽  
André Röhm ◽  
Raul Vicente ◽  
Ingo Fischer ◽  
Serhiy Yanchuk

AbstractDeep neural networks are among the most widely applied machine learning tools showing outstanding performance in a broad range of tasks. We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops. This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals. The network states emerge in time as a temporal unfolding of the neuron’s dynamics. By adjusting the feedback-modulation within the loops, we adapt the network’s connection weights. These connection weights are determined via a back-propagation algorithm, where both the delay-induced and local network connections must be taken into account. Our approach can fully represent standard Deep Neural Networks (DNN), encompasses sparse DNNs, and extends the DNN concept toward dynamical systems implementations. The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Yongsen Ma ◽  
Sheheryar Arshad ◽  
Swetha Muniraju ◽  
Eric Torkildson ◽  
Enrico Rantala ◽  
...  

In recent years, Channel State Information (CSI) measured by WiFi is widely used for human activity recognition. In this article, we propose a deep learning design for location- and person-independent activity recognition with WiFi. The proposed design consists of three Deep Neural Networks (DNNs): a 2D Convolutional Neural Network (CNN) as the recognition algorithm, a 1D CNN as the state machine, and a reinforcement learning agent for neural architecture search. The recognition algorithm learns location- and person-independent features from different perspectives of CSI data. The state machine learns temporal dependency information from history classification results. The reinforcement learning agent optimizes the neural architecture of the recognition algorithm using a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). The proposed design is evaluated in a lab environment with different WiFi device locations, antenna orientations, sitting/standing/walking locations/orientations, and multiple persons. The proposed design has 97% average accuracy when testing devices and persons are not seen during training. The proposed design is also evaluated by two public datasets with accuracy of 80% and 83%. The proposed design needs very little human efforts for ground truth labeling, feature engineering, signal processing, and tuning of learning parameters and hyperparameters.


Author(s):  
Chen Qi ◽  
Shibo Shen ◽  
Rongpeng Li ◽  
Zhifeng Zhao ◽  
Qing Liu ◽  
...  

AbstractNowadays, deep neural networks (DNNs) have been rapidly deployed to realize a number of functionalities like sensing, imaging, classification, recognition, etc. However, the computational-intensive requirement of DNNs makes it difficult to be applicable for resource-limited Internet of Things (IoT) devices. In this paper, we propose a novel pruning-based paradigm that aims to reduce the computational cost of DNNs, by uncovering a more compact structure and learning the effective weights therein, on the basis of not compromising the expressive capability of DNNs. In particular, our algorithm can achieve efficient end-to-end training that transfers a redundant neural network to a compact one with a specifically targeted compression rate directly. We comprehensively evaluate our approach on various representative benchmark datasets and compared with typical advanced convolutional neural network (CNN) architectures. The experimental results verify the superior performance and robust effectiveness of our scheme. For example, when pruning VGG on CIFAR-10, our proposed scheme is able to significantly reduce its FLOPs (floating-point operations) and number of parameters with a proportion of 76.2% and 94.1%, respectively, while still maintaining a satisfactory accuracy. To sum up, our scheme could facilitate the integration of DNNs into the common machine-learning-based IoT framework and establish distributed training of neural networks in both cloud and edge.


2021 ◽  
pp. 107141
Author(s):  
Lina Wang ◽  
Xingshu Chen ◽  
Rui Tang ◽  
Yawei Yue ◽  
Yi Zhu ◽  
...  

2016 ◽  
Vol 807 ◽  
pp. 155-166 ◽  
Author(s):  
Julia Ling ◽  
Andrew Kurzawski ◽  
Jeremy Templeton

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document