scholarly journals Representing Deep Neural Networks Latent Space Geometries with Graphs

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.

2021 ◽  
Vol 42 (12) ◽  
pp. 124101
Author(s):  
Thomas Hirtz ◽  
Steyn Huurman ◽  
He Tian ◽  
Yi Yang ◽  
Tian-Ling Ren

Abstract In a world where data is increasingly important for making breakthroughs, microelectronics is a field where data is sparse and hard to acquire. Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices. This infrastructure is crucial for generating sufficient data for the use of new information technologies. This situation generates a cleavage between most of the researchers and the industry. To address this issue, this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing. The multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the ability to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data. We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device engineering, yield engineering or process monitoring. Moreover, this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experimentation infrastructure.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 98 ◽  
Author(s):  
Tariq Ahmad ◽  
Allan Ramsay ◽  
Hanady Ahmed

Assigning sentiment labels to documents is, at first sight, a standard multi-label classification task. Many approaches have been used for this task, but the current state-of-the-art solutions use deep neural networks (DNNs). As such, it seems likely that standard machine learning algorithms, such as these, will provide an effective approach. We describe an alternative approach, involving the use of probabilities to construct a weighted lexicon of sentiment terms, then modifying the lexicon and calculating optimal thresholds for each class. We show that this approach outperforms the use of DNNs and other standard algorithms. We believe that DNNs are not a universal panacea and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms.


2016 ◽  
Vol 21 (9) ◽  
pp. 998-1003 ◽  
Author(s):  
Oliver Dürr ◽  
Beate Sick

Deep learning methods are currently outperforming traditional state-of-the-art computer vision algorithms in diverse applications and recently even surpassed human performance in object recognition. Here we demonstrate the potential of deep learning methods to high-content screening–based phenotype classification. We trained a deep learning classifier in the form of convolutional neural networks with approximately 40,000 publicly available single-cell images from samples treated with compounds from four classes known to lead to different phenotypes. The input data consisted of multichannel images. The construction of appropriate feature definitions was part of the training and carried out by the convolutional network, without the need for expert knowledge or handcrafted features. We compare our results against the recent state-of-the-art pipeline in which predefined features are extracted from each cell using specialized software and then fed into various machine learning algorithms (support vector machine, Fisher linear discriminant, random forest) for classification. The performance of all classification approaches is evaluated on an untouched test image set with known phenotype classes. Compared to the best reference machine learning algorithm, the misclassification rate is reduced from 8.9% to 6.6%.


Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.


2017 ◽  
Author(s):  
Najib J. Majaj ◽  
Denis G. Pelli

ABSTRACTToday many vision-science presentations employ machine learning, especially the version called “deep learning”. Many neuroscientists use machine learning to decode neural responses. Many perception scientists try to understand how living organisms recognize objects. To them, deep neural networks offer benchmark accuracies for recognition of learned stimuli. Originally machine learning was inspired by the brain. Today, machine learning is used as a statistical tool to decode brain activity. Tomorrow, deep neural networks might become our best model of brain function. This brief overview of the use of machine learning in biological vision touches on its strengths, weaknesses, milestones, controversies, and current directions. Here, we hope to help vision scientists assess what role machine learning should play in their research.


2017 ◽  
Vol 1 (3) ◽  
pp. 83 ◽  
Author(s):  
Chandrasegar Thirumalai ◽  
Ravisankar Koppuravuri

In this paper, we will use deep neural networks for predicting the bike sharing usage based on previous years usage data. We will use because deep neural nets for getting higher accuracy. Deep neural nets are quite different from other machine learning techniques; here we can add many numbers of hidden layers to improve the accuracy of our prediction and the model can be trained in the way we want such that we can achieve the results we want. Nowadays many AI experts will say that deep learning is the best AI technique available now and we can achieve some unbelievable results using this technique. Now we will use that technique to predict bike sharing usage of a rental company to make sure they can take good business decisions based on previous years data.


2021 ◽  
Author(s):  
Anwaar Ulhaq

Machine learning has grown in popularity and effectiveness over the last decade. It has become possible to solve complex problems, especially in artificial intelligence, due to the effectiveness of deep neural networks. While numerous books and countless papers have been written on deep learning, new researchers want to understand the field's history, current trends and envision future possibilities. This review paper will summarise the recorded work that resulted in such success and address patterns and prospects.


IoT ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 222-235
Author(s):  
Guillaume Coiffier ◽  
Ghouthi Boukli Hacene ◽  
Vincent Gripon

Deep Neural Networks are state-of-the-art in a large number of challenges in machine learning. However, to reach the best performance they require a huge pool of parameters. Indeed, typical deep convolutional architectures present an increasing number of feature maps as we go deeper in the network, whereas spatial resolution of inputs is decreased through downsampling operations. This means that most of the parameters lay in the final layers, while a large portion of the computations are performed by a small fraction of the total parameters in the first layers. In an effort to use every parameter of a network at its maximum, we propose a new convolutional neural network architecture, called ThriftyNet. In ThriftyNet, only one convolutional layer is defined and used recursively, leading to a maximal parameter factorization. In complement, normalization, non-linearities, downsamplings and shortcut ensure sufficient expressivity of the model. ThriftyNet achieves competitive performance on a tiny parameters budget, exceeding 91% accuracy on CIFAR-10 with less than 40 k parameters in total, 74.3% on CIFAR-100 with less than 600 k parameters, and 67.1% On ImageNet ILSVRC 2012 with no more than 4.15 M parameters. However, the proposed method typically requires more computations than existing counterparts.


2018 ◽  
Author(s):  
Karim Rajaei ◽  
Yalda Mohsenzadeh ◽  
Reza Ebrahimpour ◽  
Seyed-Mahdi Khaligh-Razavi

AbstractCore object recognition, the ability to rapidly recognize objects despite variations in their appearance, is largely solved through the feedforward processing of visual information. Deep neural networks are shown to achieve human-level performance in these tasks, and explain the primate brain representation. On the other hand, object recognition under more challenging conditions (i.e. beyond the core recognition problem) is less characterized. One such example is object recognition under occlusion. It is unclear to what extent feedforward and recurrent processes contribute in object recognition under occlusion. Furthermore, we do not know whether the conventional deep neural networks, such as AlexNet, which were shown to be successful in solving core object recognition, can perform similarly well in problems that go beyond the core recognition. Here, we characterize neural dynamics of object recognition under occlusion, using magnetoencephalography (MEG), while participants were presented with images of objects with various levels of occlusion. We provide evidence from multivariate analysis of MEG data, behavioral data, and computational modelling, demonstrating an essential role for recurrent processes in object recognition under occlusion. Furthermore, the computational model with local recurrent connections, used here, suggests a mechanistic explanation of how the human brain might be solving this problem.Author SummaryIn recent years, deep-learning-based computer vision algorithms have been able to achieve human-level performance in several object recognition tasks. This has also contributed in our understanding of how our brain may be solving these recognition tasks. However, object recognition under more challenging conditions, such as occlusion, is less characterized. Temporal dynamics of object recognition under occlusion is largely unknown in the human brain. Furthermore, we do not know if the previously successful deep-learning algorithms can similarly achieve human-level performance in these more challenging object recognition tasks. By linking brain data with behavior, and computational modeling, we characterized temporal dynamics of object recognition under occlusion, and proposed a computational mechanism that explains both behavioral and the neural data in humans. This provides a plausible mechanistic explanation for how our brain might be solving object recognition under more challenging conditions.


2018 ◽  
Author(s):  
Gary H. Chang ◽  
David T. Felson ◽  
Shangran Qiu ◽  
Terence D. Capellini ◽  
Vijaya B. Kolachalama

ABSTRACTBackground and objectiveIt remains difficult to characterize pain in knee joints with osteoarthritis solely by radiographic findings. We sought to understand how advanced machine learning methods such as deep neural networks can be used to analyze raw MRI scans and predict bilateral knee pain, independent of other risk factors.MethodsWe developed a deep learning framework to associate information from MRI slices taken from the left and right knees of subjects from the Osteoarthritis Initiative with bilateral knee pain. Model training was performed by first extracting features from two-dimensional (2D) sagittal intermediate-weighted turbo spin echo slices. The extracted features from all the 2D slices were subsequently combined to directly associate using a fused deep neural network with the output of interest as a binary classification problem.ResultsThe deep learning model resulted in predicting bilateral knee pain on test data with 70.1% mean accuracy, 51.3% mean sensitivity, and 81.6% mean specificity. Systematic analysis of the predictions on the test data revealed that the model performance was consistent across subjects of different Kellgren-Lawrence grades.ConclusionThe study demonstrates a proof of principle that a machine learning approach can be applied to associate MR images with bilateral knee pain.SIGNIFICANCE AND INNOVATIONKnee pain is typically considered as an early indicator of osteoarthritis (OA) risk. Emerging evidence suggests that MRI changes are linked to pre-clinical OA, thus underscoring the need for building image-based models to predict knee pain. We leveraged a state-of-the-art machine learning approach to associate raw MR images with bilateral knee pain, independent of other risk factors.


Sign in / Sign up

Export Citation Format

Share Document