scholarly journals High temperature bi-axial low cycle fatigue behaviour of railway wheel steel

2019 ◽  
Vol 300 ◽  
pp. 07001
Author(s):  
Dimitrios Nikas ◽  
Johan Ahlström

One of the most important aspects in railway operation is the interaction between rail and wheel. Railway wheels are commonly made from medium carbon steels (∼ 0.55 wt.% C), heat treated to a near pearlitic microstructure with some 5–10% pro-eutectoid ferrite. During the operation of freight trains, where block brakes are used, high thermal loads are evolved because of recurring braking and occasional slippage. Thus the combination of mechanical and thermal loads leads to changes in the mechanical properties of the material. The focus of the current investigation is to evaluate the mechanical behaviour of wheel material (UIC ER7T) subjected to non-proportional biaxial fatigue loading, as this simulates the actual working conditions in a better way than uniaxial loading. Axial-torsional low cycle fatigue tests were performed at room temperature and elevated temperatures using thin walled specimens to study the cyclic stress-strain properties of this material. The results showed large influence of temperature on the ratcheting behaviour of the material. Biaxial non-proportional loading gave much higher strain hardening as compared to uniaxial loading. Hardening due to dynamic strain ageing can be seen in the biaxial tests at temperatures around 300°C.

2014 ◽  
Vol 891-892 ◽  
pp. 383-388 ◽  
Author(s):  
R. Sandhya ◽  
Vani Shankar ◽  
K. Mariappan ◽  
M.D. Mathew ◽  
Tammana Jayakumar ◽  
...  

Reduced activation ferritic/martensitic (RAFM) steels are candidate materials for the test blanket modules of ITER. Several degradation mechanisms such as thermal fatigue, low cycle fatigue, creep fatigue interaction, creep, irradiation hardening, swelling and phase instability associated irradiation embrittlement must be understood to estimate the component lifetime. The current work focuses on the effect of tungsten and tantalum on low cycle fatigue (LCF) and creep-fatigue interaction (CFI) behavior of four RAFM steels with varying W and Ta contents. Total strain controlled LCF experiments were performed under various strain amplitudes in the range +0.25% to +1% and temperatures (300 K to 873 K) in air at a constant strain rate of 3×10-3s-1 using a servo hydraulic fatigue testing system. CFI experiments were carried out at total strain amplitude of +0.6% and by applying strain hold of different durations (10 min and 30 min) in peak tension and peak compression. Both LCF and CFI life of the RAFM steels improved with the increase in tungsten and tantalum contents. Based on the amount of softening during continuous cycling, tungsten content was optimized at 1.4 wt. % and the tantalum content at 0.06 wt%. Stress relaxation obtained during creep-fatigue interaction studies showed close relation with the chemical composition of the RAFM steels. Other damaging parameters influencing fatigue life were dynamic strain ageing (DSA) occurring in the intermediate temperature regime and oxidation at elevated temperatures. Keywords: RAFM steel, low cycle fatigue, dynamic strain ageing, creep-fatigue interaction, oxidation


2004 ◽  
Vol 261-263 ◽  
pp. 1135-1140 ◽  
Author(s):  
Keum Oh Lee ◽  
Sam Son Yoon ◽  
Soon Bok Lee ◽  
Bum Shin Kim

In recent, ferritic stainless steels are widely used in high temperature structure because of their high resistance in thermal fatigue and low prices. Tensile and low cycle fatigue(LCF) tests on 429EM stainless steel were performed at several temperatures from room temperature to 600°C. Elastic modulus, yield stress and ultimate tensile strength(UTS) decreased with increasing temperature. Considerable cyclic hardening occurred at 200°C and 400°C. 475°C embrittlement observed could not explain this phenomenon but dynamic strain aging(DSA) observed from 200°C to 500°C could explain the hardening mechanism at 200°C and 400°C. And it was observed that plastic strain energy density(PSED) was useful to predict fatigue life when large cyclic hardening occurred. Fatigue life using PSED over elastic modulus could be well predicted within 2X scatter band at various temperatures.


2012 ◽  
Vol 546 ◽  
pp. 34-39 ◽  
Author(s):  
A. Nagesha ◽  
Sunil Goyal ◽  
M. Nandagopal ◽  
P. Parameswaran ◽  
R. Sandhya ◽  
...  

2014 ◽  
Vol 891-892 ◽  
pp. 377-382 ◽  
Author(s):  
Guo Cai Chai

Austenitic stainless steel grade UNS S31035 (Sandvik Sanicro® 25) has been developed for the next generation of 700°C A-USC power plant. This paper will mainly focus on the study of low cycle fatigue behavior and damage mechanisms of the material at room temperature, 600C to 700C by using electron back scatter diffraction and electron channeling contrast image techniques. At room temperature, the material shows a hardening and softening behavior as usual. At high temperature, however, it shows only a cyclic hardening behavior. Dynamic strain ageing can be one of the mechanisms. The damage and fatigue crack initiation mechanisms due to cyclic loading at different temperatures and loading conditions have been identified. The interactions between dislocations or slip bands with grain boundary or twin boundary are the main damage mechanism at low temperature or at high temperature with large strain amplitudes. Strain localization due to dislocation slipping is the main mechanism for the damage in grain.


Sign in / Sign up

Export Citation Format

Share Document