scholarly journals Minimization torque ripple for SRM based on flux linkage partition in DB-DTFC

2020 ◽  
Vol 306 ◽  
pp. 04007
Author(s):  
Qianni Li ◽  
Aide Xu ◽  
Chaoyi Shang ◽  
Lepeng Huang

This paper proposes a novel deadbeat torque and flux control (DB-DTFC) to reduce torque ripple for switched reluctance motor (SRM). DB-DTFC combines the advantages of direct torque control (DTC) and space-vector modulation (SVM). DB-DTFC leads current vector control into DTC in order to find the equation between torque and current through deadbeat prediction theory i.e. a beat reaches a given point. In addition, the deadbeat calculation module here is similar to that of permanent magnet synchronous motor. Based on dq0 reference frame of SRM, the most suitable dq0 axis current of next moment corresponding to different torque errors is calculated and predicted. According to the calculated dq0 axis current, the optimal space voltage vectors can be selected to reduce torque ripple. In order to verify the effectiveness and correctness of the proposed scheme, DB-DTFC is verified and compared with the DTC-SVM by simulation.

Author(s):  
Tibor Vajsz ◽  
László Számel ◽  
György Rácz

Direct torque control with space vector modulation (DTC-SVM) is one of the most promising alternatives of field-oriented control in the case of permanent magnet synchronous motor drives. This method controls the electromagnetic torque of the motor with excellent dynamics which makes it an attractive choice in the case of servo drives. In this article DTC-SVM is investigated with Matlab-Simulink simulation and it is proven that DTC-SVM has severe instability-issues during overloading and its overload-capabilities are heavily dependent on the speed. Therefore, a novel modified DTC-SVM method is proposed which is stable during overloading and its overload-capabilities are practically independent of the speed. Also, the overload-capability of the new method is superior to that of classical DTC-SVM, while the two methods are practically identical from the point of view of the torque-control dynamics and the torque-ripple generated.


2012 ◽  
Vol 614-615 ◽  
pp. 1570-1573
Author(s):  
Ying Pei Liu ◽  
Ran Li ◽  
Zhi Chao Zhang

In order to reduce the ripples of flux linkage and torque for direct torque control (DTC) and ensure constant inverter switching frequency, permanent magnet synchronous motor (PMSM) DTC based on space vector modulation (SVM) and extended Kalman filter (EKF) is researched in the paper. Simulation results have shown that the inherent advantages of fast dynamic response of DTC are maintained, and flux linkage and torque ripples are effectively reduced. Speed is estimated accurately, and sensorless operation is realized.


2008 ◽  
Vol 28 (1-2) ◽  
pp. 247-253 ◽  
Author(s):  
Youn-Hyun Kim ◽  
Sol Kim ◽  
Jae-Hak Choi ◽  
Joonseon Ahn ◽  
Chang-Hyun Cho ◽  
...  

2013 ◽  
Vol 416-417 ◽  
pp. 480-485
Author(s):  
Wei Zhang ◽  
Ping Zhang ◽  
Xin Hao Zhang ◽  
Xiao Feng Shen

This paper has proposed an efficient direct torque control strategy based on space vector modulation (SVM-DTC) for dual three-phase permanent magnet synchronous motor (DTP-PMSM), which is implemented in a synchronous reference frame aligned with the machine stator flux vector. This strategy adopts the space vector modulation technique to compensate for the stator flux error, and then the continuous smooth response of the vector control and the rapid response of direct torque control are both achieved. Simulation studies of a 3KW DTP-PMSM are carried out. Simulation results show the improvement of the torque response, decrease of the torque ripple, the higher steady performance and better flux waveform.


Author(s):  
Tibor Vajsz ◽  
László Számel

Direct torque control with space vector modulation (DTC-SVM) is one of the most popular methods in the case of permanent magnet synchronous motor drives due to its excellent torque-control capabilities. This method facilitates a very high torque-control dynamic performance which is an especially important requirement in the field of servo- and robotic applications, thus making DTC-SVM a natural choice in these cases. In this article a novel Improved Modified DTC-SVM (IMDTC-SVM) method is presented and it is proven that this method has a very high overload-capability and is stable during overload-conditions, while the torque-control dynamics and the torque-ripple generated are practically identical with those of the classical DTC-SVM and the MDTC-SVM.


Author(s):  
Tibor Vajsz ◽  
László Számel

Direct torque control with space vector modulation (DTC-SVM) is one of the most popular methods in the case of permanent magnet synchronous motor drives due to its excellent torque-control capabilities. This method facilitates a very high torque-control dynamic performance which is an especially important requirement in the field of servo- and robotic applications, thus making DTC-SVM a natural choice in these cases. In this article simplified forms of the Improved Modified DTC-SVM (IMDTC-SVM) method that has been introduced in Part 1 are presented and it is proven that these methods have a very high overload-capability as well, they are stable during overload-conditions, while the torque-control dynamics and the torque-ripple generated are practically identical with those of the classical DTC-SVM, the MDTC-SVM and the standard IMDTC-SVM. Although the simplified forms have a somewhat lower overload-capability than that of the standard IMDTC-SVM, they have a significantly simpler structure, they require much less computation and the tuning of the complete control system is in one case much simpler.


2020 ◽  
Vol 8 (5) ◽  
pp. 4420-4424

This paper deals with implementation of direct torque control (DTC) Permanent-Magnet Synchronous Motor (PMSM) driven by a matrix converter for industry applications. A field oriented vector & direct torque control (DTC) is implemented. The simulation test results are presented for converters with Space vector modulation techniques. The advantages of all solutions are indicated. The main focus is given to the drive control in the low speed range and to present drive systems with a matrix converter as an optimum solution for Industry Applications for precision control of speed and torque. The Simulation results of the novel scheme is carried out by using Matlab. The simulation results show that the proposed novel control scheme has a good dynamic response in terms of three phase stator current, speed and torque response. It can also reduce the torque ripple and THD of voltage and current gives better motor performance.


Sign in / Sign up

Export Citation Format

Share Document