scholarly journals Modeling the hardness of the titanium alloy subjected to laser processing

2020 ◽  
Vol 329 ◽  
pp. 03020
Author(s):  
Vladimir Gusev ◽  
Valentin Morozov ◽  
Dmitry Gavrilov

The article considers the influence of the radiation power W, the longitudinal feed Spr of the laser beam and the distance L from the protective glass of the laser focusing head to the workpiece on the hardness Hv of the titanium alloy TiTaN. A multi-factor model is established that relates the surface layer hardness to the input factors of laser processing and allows you to quickly assign a laser treatment mode and to control it in order to improve the quality of the processed layer. The power W has the greatest effect on the hardness of the surface layer. With increasing W, the hardness increases. Increasing the feed Spr leads to a decrease in the Hv parameter. The effect of the distance L is similar to the radiation power, but the degree of influence of L is more than half as small as W. The developed method of operational assignment of the laser processing mode allows to reduce the auxiliary time for performing the technological operation. The research results are relevant for manufacturing enterprises that implement laser processing processes, as well as for design organizations that develop modern laser equipment.

2021 ◽  
Vol 344 ◽  
pp. 01011
Author(s):  
Valentin Morozov ◽  
Vladimir Gusev ◽  
Alexey Morozov ◽  
Dmitry Gavrilov

The article considers the influence of the radiation power W, the longitudinal feed Spr of the laser beam and the distance L from the protective glass of the laser focusing head to the workpiece on the PG-CP4 coating hardness which was applied to H12M steel by plasma and then subjected to laser treatment. A multi-factor model is established that relates the PG-CP4 coating hardness to the input process factors and allows you to quickly assign a laser treatment mode and to control it in order to improve the quality of the processed surface layer. Increasing W, Spr and L leads to a increase in the HV parameter. The longitudinal feed Spr of the laser beam has the greatest effect on the surface layer hardness, then followed the distance L and radiation power W. The research results are relevant for manufacturing enterprises that implement laser processing processes of materials and design organizations that develop modern laser equipment.


2021 ◽  
Vol 344 ◽  
pp. 01007
Author(s):  
Vladimir Gusev ◽  
Valentin Morozov ◽  
Alexey Morozov ◽  
Dmitry Gavrilov

The article considers the influence of the radiation power W, the longitudinal feed Spr of the laser beam and the distance L from the protective glass of the laser focusing head to the workpiece on the PG-CP4 powder coating absolute wear which was applied to HVG steel by plasma and subjected to laser treatment. A multi-factor model is established that relates the absolute wear of PG-CP4 coating to the input process factors and allows you to assign a laser treatment mode to provide the minimum wear of the processed surface layer. The greatest influence on coating absolute wear is provided by the longitudinal feed of laser beam, with which the wear increases. Compared to Spr, the influence of factor W on the coating absolute wear is 24% less, and the factor L influence is 4.4 times less. The minimum absolute wear of the coating occurs at W = 5 kW, Spr = 40 mm/s, L = 85 mm. The results of the research are recommended for use in enterprises that implement the processes of plasma and laser processing of materials, as well as in design organizations that develop modern technological laser systems.


Author(s):  
V. Shmorgun ◽  
O. Slautin ◽  
A. Serov ◽  
R. Novikov

The influence of the parameters of laser processing of copper plating deposited by explosion welding and subsequent rolling on the titanium surface on the structure and phase composition of the coatings is studied. It is shown that alloying titanium with copper leads to the formation of intermetallic compounds (titanium cuprides) in the remelting zone, which contributes to a significant increase in the wear resistance of the surface layer. When tested for wear on a fixed abrasive, the wear resistance of the coating is 2 times higher than that of VT1-0 titanium alloy.


Author(s):  
В. Полетаев ◽  
V. Poletaev ◽  
Е. Цветков ◽  
E. Tsvetko

The investigation results of technological conditions impact at multiaxes deep grinding upon quality of titanium alloy blade surface layer in the compressors of gas turbine engines (GTE) are presented. The grinding mode impact upon a surface and a value of residual stresses in a surface layer of blades is defined and also conditions for defect occurrence as burns on blade surfaces under machining are detected.


2021 ◽  
Vol 410 ◽  
pp. 456-462
Author(s):  
Vladimir G. Gusev ◽  
Valentin V. Morozov ◽  
Dmitry I. Gavrilov

The article examines the hardness of the coating made of PG-CP4 powder. Plasma powder deposition was performed to samples made of 40H13 steel and then the samples treated with a laser beam. A multi-factor model was established that relates the hardness of the protective coating to the radiation power W, the longitudinal feed Spr of the laser beam, and the distance L from the protective casing of the laser head to the treated surface. Depending on the laser treatment modes, coating was in a state of complete, partial reflow or its absence. Full reflow is characterized by the adhesion of the filler material to the substrate, by maximum hardness of HRC 51.2–56.6 and no defects. In the absence of reflow, gas sinks, transverse microcracks, detachments, and other defects were found in the coating material, and the hardness decreased to HB 125–212. An increase in W and a decrease in Spr lead to increases the hardness of the treated coating, which is explained by an increase in the specific heat flux supplied to the coating per unit time, and a high rate of heat removal deep into the surface layer of 40H13 steel. The thickness of the surface layer with increased hardness ranged from 0.1 to 1.5 mm. Based on the multi-factor model, laser processing modes are controlled to ensure the required values of the protective coating hardness. The research results are recommended for use in enterprises that implement laser technologies and develop modern laser systems.


2021 ◽  
Vol 410 ◽  
pp. 482-488
Author(s):  
Valentin V. Morozov ◽  
Vladimir G. Gusev ◽  
Aleksey V. Morozov

This article deals with laser treatment of plasma spraying of PG-CP4 powder on steel 40H13. A multi-factor model is obtained that relates the friction coefficient of the coating to the radiation power W, the longitudinal feed of the laser beam Spr, and the distance L from the protective glass of the laser head to the sample’s surface. The model allows you to control the modes of laser processing, in order to reduce the friction coefficient of the coating. The greatest influence on the friction coefficient is exerted by the longitudinal feed Spr of the laser beam, followed by the radiation power W and the distance L. A multi-factor model of the friction coefficient of uncoated 40H13 steel treated under the same conditions as coated 40H13 steel is also established. Comparison of the two variants showed that of all the samples providing reliable adhesion of the coating to the substrate, the greatest reduction in the friction coefficient (by 30.2 %) was achieved at W = 5 kW, Spr = 25 mm/s and L = 85 mm. The results of the research are recommended for use in enterprises that implement the processes of plasma and laser processing of materials, as well as in design organizations that develop modern laser systems.


2007 ◽  
Vol 14 (05) ◽  
pp. 885-890 ◽  
Author(s):  
Y. S. TIAN ◽  
D. Y. WANG ◽  
C. Z. CHEN

The effect of laser processing parameters on the microstructure and quality of the coatings fabricated on titanium alloy has been investigated. Results show that the increase of the output power and the decrease of the scanning speed result in the thickness increase and the microstructure coarseness of the coatings. Overlapped fraction of the laser tracks significantly affects the coating's quality. With a lower overlapped fraction, pores and cracks easily occur in the overlapped area due to the inferior metallurgical quality.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052039
Author(s):  
V V Morozov ◽  
V G Gusev ◽  
A V Morozov

Abstract This paper discusses the wear of PG-CP4 powder coating deposited by plasma on 40H13 steel and treated by laser. A multi-factor model was established that relates the absolute wear of the PG-CP4 coating to independent factors of the laser processing process and allows you to reduce the coating wear. The longitudinal feed Spr of the laser beam and distance L from the protective glass of the laser head to the processed surface have the greatest and approximately equal influence on the absolute wear of the coating, and the radiation power W -a minimum influence. The research of 40H13 steel coated (the first option) and uncoated steel (the second option), showed that of all the samples that provide reliable adhesion of the coating to the substrate and the greatest reduction in absolute wear (from 80 to 22 micrometers, by 72.5 %) was achieved in the first case at the mode: W = 3 kW, Spr = 10 mm/s and L = 60 mm. The results of the research are recommended for use in enterprises that implement the processes of plasma and laser processing of materials, as well as in design organizations that develop modern technological laser systems.


2015 ◽  
Vol 770 ◽  
pp. 205-208
Author(s):  
N.A. Saprykina ◽  
A.A. Saprykin ◽  
Ivan F. Borovikov

The results of experimental studies of the influence of technological regimes of laser irradiation on the thickness of the surface layer of the sintered aluminum powder PA-4. The basic mode settings that affect the quality of the sintered surface layer - laser power, scanning speed and move the laser beam powder layer. The limits of variation of the thickness of the sintered layer from 0.74 to 1.55 mm by changing the technological conditions of laser processing.


Sign in / Sign up

Export Citation Format

Share Document