scholarly journals LOCAL ALLOYING OF TITANIUM COPPER

Author(s):  
V. Shmorgun ◽  
O. Slautin ◽  
A. Serov ◽  
R. Novikov

The influence of the parameters of laser processing of copper plating deposited by explosion welding and subsequent rolling on the titanium surface on the structure and phase composition of the coatings is studied. It is shown that alloying titanium with copper leads to the formation of intermetallic compounds (titanium cuprides) in the remelting zone, which contributes to a significant increase in the wear resistance of the surface layer. When tested for wear on a fixed abrasive, the wear resistance of the coating is 2 times higher than that of VT1-0 titanium alloy.

2015 ◽  
Vol 1085 ◽  
pp. 63-67
Author(s):  
Yurii F. Ivanov ◽  
Natalja Popova ◽  
Mark Kalashnikov ◽  
Victor Gromov ◽  
Evgeniy Budovskih ◽  
...  

Modification of a titanium surface layer with yttrium using the combined technique of electroexplosive doping and the subsequent irradiation by a high-intensity electron beam is carried out. The studies on the structure, the element and the phase composition, mechanical and tribological properties of the doped layer are carried out. Formation of a multiphase submicron-nanocrystalline eutectic is revealed. A multifold increase in the microhardness, a decrease in the friction coefficient and the wear rate of the modified layer is established.


2011 ◽  
Vol 48-49 ◽  
pp. 1177-1181
Author(s):  
Feng Hua Li ◽  
Xiao Hong Yi ◽  
Jing Lei Zhang ◽  
Zhan Guo Fan

Solid powder boriding experiment was carried out on TC4 titanium alloy surface with method of RE(rare earth)-boriding at the temperature of over 1000°C. By means of XRD, SEM and EDS, phase composition, microstructure and morphology of TC4 titanium alloy after RE-boriding were investigated. The effect of rare earth on phase composition was discussed. Results of the experiment showed that the diffusion layer was composed of top-layer TiB2 and sub-layer TiB whiskers with the highest thickness being 25μm. The XRD results revealed TiB-TiB2 biphasic B-Ti compounds layer formed on the surface of TC4 after RE-boriding. The high content of B and Ce in the surface layer showed rare earth increased the absorption and concentration of B atoms.


2019 ◽  
Vol 62 (6) ◽  
pp. 446-451 ◽  
Author(s):  
M. S. Stepanov ◽  
Yu. M. Dombrovskii ◽  
L. V. Davidyan

Boriding is a common method of thermo-chemical treatment of steel products. It increases their hardness and wear resistance, but also increases the surface fragility, has a long duration and high labor intensity. The combined coating with boron and vanadium is used to improve the properties, and it is possible to apply microarc surface alloying to reduce the duration of the diffusion saturation process. This makes it possible to intensify the diffusion of alloying elements by forming a gas discharge zone at the surface of the steel product. The aim of this work was to study the structure, phase composition, mechanical properties and wear resistance of steel after boriding and vanadation. During the experiments, a lubricant containing boron carbide powders B4C and ferrovanadium FeV80 were used, which was applied to the surface of the steel sample. During boriding and vanadation of steel a surface layer with a thickness of 150 – 190 μm is formed. It has a base with microhardness of 7.8 – 8.3 GPa and light grey granular inclusions and eutectic areas with microhardness of 13.5 – 14.0 GPa. Further there is a carbonized layer of eutectoid concentration, passing into the original ferrite-perlite structure. The content of alloying elements in the characteristic points of the surface layer was determined, which confirmed the increased content of carbon, vanadium and boron in the base layer, areas of eutectic and carbide phase. X-ray phase analysis revealed the presence of iron borides FeB and Fe2B, vanadium borides VB2 and V2B3 and vanadium carbide VC0.88 in the surface layer. Mechanical properties of coatings were studied by microindentation of its cross-section with registration and analysis of deformation diagram under loading and subsequent unloading of the indenter. Hardness at indentation in the base layer increased to 7.95 GPa, in dispersed inclusions – to 13.90 GPa. The modulus of elasticity for indentation in the base and inclusions is 238 MPa and 340 MPa, respectively. Creep and proportion of the plastic component in microindentation is naturally reduced with increase in hardness. Fine inclusions of iron borides, vanadium borides and carbides significantly increase the steel wear resistance. It has increased in 4 times during friction against the fixed abrasive particles in comparison with the initial state. 


2020 ◽  
pp. 457-460
Author(s):  
P.G. Ovcharenko ◽  
S.A. Tereshkina ◽  
A.Yu. Leshchev ◽  
V.V. Tarasov

The effect of chemical-thermal treatment (borating) on the structure, composition, depth and hardness of the surface layer of samples from chromium-bearing iron-carbon alloys: 95Kh18 steel and ChKh12 and ChKh32 cast iron is shown. The results of comparative tests of the studied materials on the wear resistance in the conditions of dry friction on fixed abrasive are presented.


2020 ◽  
Vol 836 ◽  
pp. 104-110
Author(s):  
V.I. Shastin ◽  
S.K. Kargapol’tsev

The article deals with topical issues of studying the physical, mechanical and tribological parameters of the surface layer of machine parts subjected to laser processing. Various options for modifying mating surfaces are evaluated and analyzed. The data of microstructural analysis and indicators of wear resistance are presented. A theoretical model of the wear of heat-strengthened surfaces is proposed, explaining the mechanism for increasing their wear resistance as a result of homogenization of the microstructure of a special surface layer with increased bearing capacity. It is experimentally confirmed that the greatest wear resistance is observed in friction units during mutual modification of mating surfaces.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3951
Author(s):  
Tadeusz Frączek ◽  
Rafał Prusak ◽  
Marzena Ogórek ◽  
Zbigniew Skuza

The study assessed the effect of ion nitriding on the properties of the surface layer of Grade 5 titanium alloy used, among others, in medicine. Titanium and its alloys have low hardness and insufficient wear resistance in conditions of friction which limits the use of these materials. The improvement of these properties is only possible by the appropriate modification of the surface layer of these alloys. The ion nitriding process was carried out in a wide temperature range, i.e., 530–590 °C, and in the time range 5–17 h. Two variants of nitriding were applied: cathodic (conventional) nitriding and nitriding using the active screen method. The research results presented in this article allow for stating that each of the applied nitriding variants improves the analysed properties (nitrogen diffusion depth, hardness, wear resistance, microstructure analysis and surface topography) of the surface layers in relation to the material before nitriding. The hardness increased in every nitriding variant (the use of the additional active screen increased the hardness to 1021 HK0.025). The greatest increase in titanium abrasion resistance was found for surfaces after cathodic nitriding with an active screen. Each of the applied nitriding variants resulted in surface development.


2020 ◽  
Vol 329 ◽  
pp. 03020
Author(s):  
Vladimir Gusev ◽  
Valentin Morozov ◽  
Dmitry Gavrilov

The article considers the influence of the radiation power W, the longitudinal feed Spr of the laser beam and the distance L from the protective glass of the laser focusing head to the workpiece on the hardness Hv of the titanium alloy TiTaN. A multi-factor model is established that relates the surface layer hardness to the input factors of laser processing and allows you to quickly assign a laser treatment mode and to control it in order to improve the quality of the processed layer. The power W has the greatest effect on the hardness of the surface layer. With increasing W, the hardness increases. Increasing the feed Spr leads to a decrease in the Hv parameter. The effect of the distance L is similar to the radiation power, but the degree of influence of L is more than half as small as W. The developed method of operational assignment of the laser processing mode allows to reduce the auxiliary time for performing the technological operation. The research results are relevant for manufacturing enterprises that implement laser processing processes, as well as for design organizations that develop modern laser equipment.


2018 ◽  
Vol 284 ◽  
pp. 242-246
Author(s):  
Yu.S. Bakhracheva

This article examines the influence of laser heat treatment of nitrocementation steel on the phase composition, structure and hardness of surface layers. It is shown that the combined heat treatment of steels – nitrocementation and laser hardening allows to provide high wear resistance of surface layers of steel.


Sign in / Sign up

Export Citation Format

Share Document