scholarly journals Transient Stability Assessment of IEEE 9-Bus System Integrated Wind Farm

2021 ◽  
Vol 335 ◽  
pp. 02006
Author(s):  
Ahmad Adel Alsakati ◽  
Chockalingam Aravind Vaithilingam ◽  
Jamal Alnasseir

The use of wind energy is increased due to the high demand for sustainable energy. The penetration of wind energy in electrical networks might have several effects on load flow and power system stability. In this research, the transient stability of the IEEE 9-Bus system integrated with Doubly Fed Induction Generator (DFIG) is analyzed. Additionally, different penetration levels of a wind farm are considered. With a 5% penetration of wind energy, the maximum power angle of the synchronous generator is around 129 deg, which is quite similar to the existing system. In contrast, the power angle increases to 140 deg after adding more wind turbines with 15% wind farm penetration. Then, the system loses stability with a 25% penetration of wind energy. The results indicate that the high penetration of wind energy has a destabilizing impact on the studied network. Moreover, the location of the wind farm affects transient stability. This research intends to contribute towards assessing the stability of the power system integrated DFIG. Hence, this study will support the increase of using wind energy in power systems rather than conventional power plants and evaluate the stability to enable the reliability of alternative energy sources in the grid.

Author(s):  
S. Surender Reddy ◽  
Kishore Prathipati ◽  
Young Hwan Lho

AbstractThis paper proposes a methodology to improve the transient stability (TS) of a system with wind energy generators. Induction machines are used widely as generators in the wind power plants. As these induction machines also have the stability problem like other synchronous machines, it is very important to analyze the TS of a system including the wind power plants. In this paper, the simulations and analysis of TS of power system including the induction generators during the short circuit fault conditions are carried out. The effect of pitch angle control on the stability of power system is analyzed. From the simulation results, it can be observed that the pitch control system which prevents the excess wind speed has the significant effect on the TS enhancement of the system. It can also be observed that the controller gain and time constant values have considerable effect on the pitch control system.


2020 ◽  
Vol 10 (24) ◽  
pp. 9034
Author(s):  
Junji Tamura ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Atsushi Sakahara ◽  
Fumihito Tosaka ◽  
...  

The penetration level of large-scale wind farms into power systems has been increasing significantly, and the frequency stability and transient stability of the power systems during and after a network fault can be negatively affected. This paper proposes a new control method to improve the stability of power systems that are composed of large wind farms, as well as usual synchronous generators. The new method is a coordinated controlling method between an adjustable-speed pumping generator (ASG) and a battery. The coordinated system is designed to improve power system stability during a disconnection in a fixed-rotor-speed wind turbine with a squirrel cage-type induction generator (FSWT-SCIG)-based wind farm due to a network fault, in which a battery first responds quickly to the system frequency deviation due to a grid fault and improves the frequency nadir, and then the ASG starts to supply compensatory power to recover the grid frequency to the rated frequency. The performance of the proposed system was confirmed through simulation studies on a power system model consisting of usual synchronous generators (SGs), an ASG, a battery, and an SCIG-based wind farm. Simulation results demonstrated that the proposed control system can enhance the stability of the power system effectively.


2020 ◽  
Vol 10 (4) ◽  
pp. 5925-5932
Author(s):  
N. Anwar ◽  
A. H. Hanif ◽  
H. F. Khan ◽  
M. F. Ullah

The determination of the transient stability of an electric power system is a crucial step in power system analysis. This paper investigates the transient stability of an IEEE-9 bus system consisting of three generators and nine buses. At first, a load flow analysis is conducted in order to determine the pre-fault conditions. Secondly, fault analysis is performed to analyze post fault conditions like the fast fault clearing time and load switching in order to determine the system stability. For transient stability analysis, Euler and Runga methods are compared and applied on the frequency and rotor angle of the system to analyze the system variations under different fault conditions. The simulations were done on the Power World Simulator (PWS) software. It is concluded that Critical Fault Clearing Time (CFCT) is a very important factor in keeping the power system within the stability bounds. A slight increase in Clearing Time (CT) from the critical value causes un-synchronism.


The stability is an important guarantee for the safe and reliable operation of the power system, it is a decisive factor to limit the transmission distance and conveying capacity of the power system. Therefore, various measures must be taken to improve the system stability. The stability of the power system includes power angle stability, voltage stability and frequency stability. Among them, the power angle stability includes static stability and transient stability. Considering the importance of stability to the power system, the power system stability analysis methods and the measures to improve the power system stability is studied, so as to provide some useful reference for the safe and reliable operation of the power system. Generally, for multi-machine system transient stability becomes a major concern of wide power system due to load demand increasing day by day. In order to withstand disturbances with power quality issues requires evaluation of power system’s ability. There are many different kinds of methods for analysis of transient stability usually for multi-machine system. These methods include extended equal area criteria, time domain analysis and direct stability methods such as the transient energy function.


The need for Interconnected power system is increasing day by day because of continuous growth of Electrical energy demand and to transmit Electric power to remote places at minimum cost and minimum losses. With the operation of power system in interconnected manner, maintaining the system security is difficult task i.e. whenever a disturbance occurs, the system undergoes stability problems. Even though Conventional energy sources are available, Electrical Engineers prefer Renewable energy sources integration because of Energy crisis and pollution problems related to the former, one such Renewable energy source is Wind power. Wind energy has major share in Renewable energy sources because of its abundant availability in the nature. Whenever Wind generators coupled to the power system, the system exhibits drooping voltage characteristics and this situation becomes worse during faults. This condition can be neutralised with FACTS (Flexible AC transmission system) devices, one such FACTS device is STATCOM (static synchronous compensator). STATCOMsupports reactive and real power exchange and also improves Transient stability of the system because of its superior characteristics and quick response. In this paper a 9 bus Wind farm integrated test power system is taken and stability studies are done. Since, Wind farm is integrated with the system whenever a fault occurs, overall system stability is reduced i.e. the conventional synchronous generators can withstand it, whereas the Wind generators can’t. So to enhance the Transient stability of the system, a STATCOM is installed and the system behaviour is observed.


2018 ◽  
Vol 26 (5) ◽  
pp. 81-94 ◽  
Author(s):  
Hashim Dhahir Mohammed

In this paper, the tuning design of  SSSC and PSS was examined in increasing the damping of system oscillations and improve the stability of the power system during disturbances. The design problem of the SSSC controller and PSS is designed as problem of optimization and the technique uses (PSO) technique to find for optimal control parameters. By minimizing the objective function based on the speed deviation and time domain, which deliberately deviates at the oscillation angle of the alternator rotor to improve performance of transient stability of the system. The proposed controllers are tested on the system of weak bonding ability exposed to severe disturbance. Nonlinear simulation results are presented to demonstrate the proposed controller's effectiveness and its ability to give efficient damping. It is also noted that the proposed controllers  of SSSC and PSS greatly improves the power system stability.


2020 ◽  
Vol 6 (3) ◽  
pp. 27-30
Author(s):  
Pramod Kumar Mehar ◽  
Mrs. Madhu Upadhyay

Power system stability is related to principles of rotational motion and the swing equation governing the electromechanical dynamic behavior. In the special case of two finite machines the equal area criterion of stability can be used to calculate the critical clearing angle on the power system, it is necessary to maintain synchronism, otherwise a standard of service to the consumers will not be achieved. With the increasing penetration of doubly fed induction generators (DFIGs), the impact of the DFIG on transient stability attracts great attention. Transient stability is largely dominated by generator types in the power system, and the dynamic characteristics of DFIG wind turbines are different from that of the synchronous generators in the conventional power plants. The analysis of the transient stability on DFIG integrated power systems has become a very important issue. This paper is a review of three types of stability condition. The first type of stability, steady state stability explains the maximum steady state power and the power angle diagram. There are several methods to improve system stability in which some methods are explained.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Sunday Adetona ◽  
Emenike Ugwuagbo ◽  
Frank Okafor ◽  
Tolulope Akinbulire

Injection of a new power system component into an existing power grid often cause change in the behaviour of the power grid to which it is injected. Therefore, forecasting possible unsafe condition(s) of the power grid using an efficient power study tool is essential; and, provision of necessary mitigation actions to ensure a reliable grid is important. This paper, therefore, presents evacuation study of a 400 MW power plant connecting to the 15 GW planned transmission network of the Transmission Company of Nigeria (TCN). The NEPLAN power system analytical software was used in the modelling and simulation of the electric power grid. In the research, load flow, short circuit, transient stability, and contingency analyses were performed on the case study. From the short circuit study, it is observed that if TCN network expansion program is fully implemented, the short circuit level will go beyond the existing switchgear ratings in major substations of the network. However, with the introduction of substation splitting at Omotoso and ongoing Ogijo substations, the short circuit level will be reduced by 15%; leading to improvement in the overall system stability. Keywords—Load flow, short circuit study, transient stability study, and contingency analysis


Author(s):  
Anass Gourma ◽  
Abdelmajid Berdai ◽  
Moussa Reddak

Wind farm has been growing in recent years due to its very competitive electricity production cost. Wind generators have gone from a few kilowatts to megawatts. However, the participation of the wind turbine in the stability of the electricity grid is a critical point to check, knowing that the electricity grid is meshed, any change in active and reactive flux at the network level affects its stability. With a rate of 50% wind turbine penetration into the electricity grid, the stability of the rotor angle is a dynamic phenomenon which is only visible by the variation of the active energy. The purpose of this journal is to verify the impact of wind turbine integration on an electrical grid, by exploiting the relationship between the reactive energy produced by the Doubly Fed Induction Generator equipping most wind energy systems, and the stability of the rotor angle of the synchronous generators equipping the conventional power plants in the electrical system.


2020 ◽  
Vol 11 (1) ◽  
pp. 1-3
Author(s):  
Mohanad Abdulhamid ◽  
Koech Benard

AbstractThe use of energy in the world today is increasing with increase in population. The cost and availability of energy significantly impacts our quality of life, the health of national economies and the stability of our environment. The rapid depletion of fossil fuel resources on a worldwide basis has necessitated an urgent search for alternative energy sources to cater to the present day demands. In recent years there has been a significant global commitment to develop clean and alternative sources of energy such as solar and wind. Wind energy technology has been the fastest growing energy source because it is fairly distributed around the world and readily available for use. However, more penetration of wind energy into existing power networks has some impacts on the stability of the power system. Therefore, this paper studies and analyzes the stability of a power system with increasing wind penetration. The paper presents some analyses of a power system and the dynamic behavior which identify the issues that limit the large-scale integration of wind generators in a power system.


Sign in / Sign up

Export Citation Format

Share Document