scholarly journals Investigation of the microhardness of the W-Ni-Fe powder alloy used for the restoration of machine parts

2021 ◽  
Vol 341 ◽  
pp. 00017
Author(s):  
Evgeny Ageev ◽  
Svetlana Karpeeva

The paper presents the results of a study of the microhardness of the WNF-95 sintered electroerosive powder alloy. Powder alloy W-Ni-Fe95 was obtained by electroerosive dispersion of tungsten-containing waste in a kerosene medium. The resulting electroerosive powder alloy W-Ni-Fe 95was pressed in a vacuum chamber and sintered by the method of spark plasma sintering. The aim of this work was to study the microhardness of the WNF-95 sintered powder alloy obtained by the electroerosive dispersion of tungsten-containing waste in a kerosene medium. It has been established that the microhardness of samples sintered by the method of spark plasma sintering from particles of W-Ni-Fe 95alloy dispersed by electric erosion obtained in lighting kerosene is 2185.8 MPa and 2268.0 MPa, indicating their suitability for the manufacture of tungsten-nickel-iron alloys.

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040036
Author(s):  
Yongjun Su ◽  
Yunfeng Lin ◽  
Na Zhang ◽  
Deliang Zhang

This work deals with the consolidation of a TiAl alloy powder by spark plasma sintering (SPS). Pre-alloyed powder with a composition of Ti–48Al–2Cr–2Nb (at.%) was consolidated in a SPS furnace at temperatures between 1200[Formula: see text]C and 1325[Formula: see text]C and with a pressure of 50 MPa. The microstructures obtained after SPS depend on the sintering temperature. Tensile tests at room temperature were performed. The alloy SPSed at temperatures not less than 1250[Formula: see text]C exhibits good properties at room temperature.


1996 ◽  
Vol 43 (10) ◽  
pp. 1193-1197 ◽  
Author(s):  
Takekazu Nagae ◽  
Masateru Nose ◽  
Masaru Yokota

Sign in / Sign up

Export Citation Format

Share Document