Influence of temperature, strain ratio and strain rate on the cyclic stress-strain behaviour of a gamma-titanium-aluminide alloy

2004 ◽  
Vol 92 (1-2) ◽  
pp. 77-84
Author(s):  
A.-L. Gloanec ◽  
G. Henaff ◽  
D. Bertheau ◽  
P. Gadaud
2018 ◽  
Vol 165 ◽  
pp. 15004 ◽  
Author(s):  
Jochen Tenkamp ◽  
Alexander Koch ◽  
Stephan Knorre ◽  
Ulrich Krupp ◽  
Wilhelm Michels ◽  
...  

Aluminium alloys are promising candidates for energy-and cost-efficient components in automotive and aerospace industries, due to their excellent strength-to-weight ratio and relatively low cost compared to titanium alloys. As modern cast processing and post-processing, e.g. hot isostatic pressing, result in decreased frequency and size of defects, the weakest link depends on microstructural characteristics, e.g. secondary dendrite arm spacing (SDAS), Si eutectic morphology and α-Al solid solution hardness. Hereby, fatigue investigations of the effect of the microstructure characteristics on the cyclic stress-strain behaviour as well as fatigue mechanisms in the low cycle and high cycle fatigue regime are performed. For this purpose, samples of the aluminium cast alloy EN AC-AlSi7Mg0.3 with different Si eutectic morphology and α-Al solid solution hardness were investigated. To compare the monotonic and cyclic stress-strain curves, quasistatic tensile tests and incremental step tests were performed on two microstructure conditions. The results show that the cyclic loading leads to a hardening of the material compared to monotonic loading. Based on damage parameter Woehler curves, it is possible to predict the damage progression and fatigue life for monotonic and cyclic loading in hypo-eutectic Al-Si-Mg cast alloys by one power law.


1994 ◽  
Vol 364 ◽  
Author(s):  
J. Kameda ◽  
C. R. Gold ◽  
E. S. Lee ◽  
T. E. Bloomer ◽  
M. Yamaguchi

AbstractSmall punch (SP) tests on single grained titanium aluminide (Ti-48 at.%Al) specimens with 12° and 80° lamellar orientations with respect to the tensile stress axis were conducted at 1123 K in air. Brittle cracks readily extended through the thickness in the 80° lamellar structure. In a SP specimen with the 12° lamellar structure load-interrupted at the strain of 0.43%, surface cracks with the depth of 15–25 μm were formed along lamellar boundaries. Local oxidation behavior on partly sputtered surfaces in the load-interrupted 12° lamellar specimen was examined using scanning Auger microprobe (SAM). Oxygen enriched regions were observed near cracks and some lamellar layers. The mechanisms of high temperature oxygen-induced cracking are discussed in terms of the local oxidation near cracks and lamellar boundaries.


Author(s):  
K. J. Thompson ◽  
R. Park

The stress-strain relationship of Grade 275 steel reinforcing bar under cyclic (reversed) loading is examined using experimental results obtained previously from eleven test specimens to which a variety of axial loading cycles has been applied. A Ramberg-Osgood function is fitted to the experimental stress-strain curves to follow the cyclic stress-strain behaviour after the first load run in the plastic range. The empirical constants in the function are determined by regression analysis and are found to depend mainly on the plastic strain imposed
in the previous loading run. The monotonic stress-strain curve for the steel, with origin of strains suitably adjusted, is assumed to be the envelope curve giving the upper limit of stress. The resulting Ramberg-Osgood expression and envelope is found to give good agreement with the experimentally measured cyclic stress-strain curves.


Sign in / Sign up

Export Citation Format

Share Document