scholarly journals On The Initial Value Problem For Fractional Volterra Integrodifferential Equations With A Caputo - Fabrizio Derivative

Author(s):  
Nguyen Huy Tuan ◽  
Nguyen Anh Tuan ◽  
Donal O’regan ◽  
Vo Viet Tri

In this paper, time fractional integrodifferential equations with the Caputo - Fabrizio type derivative will be considered. In the case of a globally Lipschitz source term we obtain a global well - posed result on $\R^N$ for our problem. For the locally Lipschitz source case, we present existence and uniqueness and a finite time blow result for the solution. Our main tool is the Banach fixed point theorem and we extend  a  recent  paper of N.H. Tuan and Y. Zhou.

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Tianlong Shen ◽  
Jianhua Huang ◽  
Jin Li

The current paper is devoted to the regularity of the mild solution for a stochastic fractional delayed reaction-diffusion equation driven by Lévy space-time white noise. By the Banach fixed point theorem, the existence and uniqueness of the mild solution are proved in the proper working function space which is affected by the delays. Furthermore, the time regularity and space regularity of the mild solution are established respectively. The main results show that both time regularity and space regularity of the mild solution depend on the regularity of initial value and the order of fractional operator. In particular, the time regularity is affected by the regularity of initial value with delays.


2011 ◽  
Vol 467-469 ◽  
pp. 1078-1083
Author(s):  
Dian Chen Lu ◽  
Ruo Yu Zhu

The well-posed problem for the fully nonlinear Aceive diffusion and dispersion equation on the domain [0, 1] is investigated by using boundary control. The existence and uniqueness of the solutions with the help of the Banach fixed point theorem and the theory of operator semigroups are verified. By using some inequalities and integration by parts, the exponential stability of the fully nonlinear Aceive diffusion and dispersion equation with the designed boundary feedback is also proved.


2007 ◽  
Vol 49 (3) ◽  
pp. 515-523 ◽  
Author(s):  
CRISTÓBAL GONZÁLEZ ◽  
ANTONIO JIMÉNEZ-MELADO

AbstractStarting from results of Dubé and Mingarelli, Wahlén, and Ehrström, who give conditions that ensure the existence and uniqueness of nonnegative nondecreasing solutions asymptotically constant of the equation we have been able to reduce their hypotheses in order to obtain the same existence results, at the expense of losing the uniqueness part. The main tool they used is the Banach Fixed Point Theorem, while ours has been the Schauder Fixed Point Theorem together with one version of the Arzelà-Ascoli Theorem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ramazan Yazgan ◽  
Osman Tunç

AbstractThis study is about getting some conditions that guarantee the existence and uniqueness of the weighted pseudo almost periodic (WPAP) solutions of a Lasota–Wazewska model with time-varying delays. Some adequate conditions have been obtained for the existence and uniqueness of the WPAP solutions of the Lasota–Wazewska model, which we dealt with using some differential inequalities, the WPAP theory, and the Banach fixed point theorem. Besides, an application is given to demonstrate the accuracy of the conditions of our main results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.


1996 ◽  
Vol 06 (02) ◽  
pp. 269-277 ◽  
Author(s):  
Z. CHARKI

A fixed point argument is used to prove the existence and uniqueness of solutions for the unsteady deep Bénard convection equations in [Formula: see text] for [Formula: see text].


2019 ◽  
Vol 20 (3) ◽  
pp. 403
Author(s):  
Suzete M Afonso ◽  
Juarez S Azevedo ◽  
Mariana P. G. Da Silva ◽  
Adson M Rocha

In this work we consider the general functional-integral equation: \begin{equation*}y(t) = f\left(t, \int_{a}^{b} k(t,s)g(s,y(s))ds\right), \qquad t\in [a,b],\end{equation*}and give conditions that guarantee existence and uniqueness of solution in $L^p([a,b])$, with {$1<p<\infty$}.We use  Banach Fixed Point Theorem and employ the successive approximation method and Chebyshev quadrature for approximating the values of integrals. Finally, to illustrate the results of this work, we provide some numerical examples.


Author(s):  
Zeinab Eivazi Damirchi Darsi Olia ◽  
Madjid Eshaghi Gordji ◽  
Davood Ebrahimi Bagha

In this paper, we introduce new concept of orthogonal cone metric spaces. We stablish new versions of fixed point theorems in incomplete orthogonal cone metric spaces. As an application, we show the existence and uniqueness of solution of the periodic boundry value problem.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Diem Dang Huan

We study the existence and uniqueness of mild solutions for neutral stochastic integrodifferential equations with Poisson jumps under global and local Carathéodory conditions on the coefficients by means of the successive approximation. Furthermore, we give the continuous dependence of solutions on the initial value. Finally, an example is provided to illustrate the effectiveness of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document