scholarly journals Modelling and simulation of a wave energy converter

2021 ◽  
Vol 70 ◽  
pp. 68-83
Author(s):  
Edoardo Bocchi ◽  
Jiao He ◽  
Gastón Vergara-Hermosilla

In this work we present the mathematical model and simulations of a particular wave energy converter, the so-called oscillating water column. In this device, waves governed by the one-dimensional nonlinear shallow water equations arrive from offshore, encounter a step in the bottom and then arrive into a chamber to change the volume of the air to activate the turbine. The system is reformulated as two transmission problems: one is related to the wave motion over the stepped topography and the other one is related to the wave-structure interaction at the entrance of the chamber. We finally use the characteristic equations of Riemann invariants to obtain the discretized transmission conditions and we implement the Lax-Friedrichs scheme to get numerical solutions.

Author(s):  
Warren R. Smith

A comprehensive linear mathematical model is constructed to address the open problem of the radiated wave for the distensible tube wave energy converter. This device, full of sea water and located just below the surface of the sea, undergoes a complex interaction with the waves running along its length. The result is a bulge wave in the tube which, providing certain criteria are met, grows in amplitude and captures the wave energy through the power take-off mechanism. Successful optimization of the device means capturing the energy from a much larger width of the sea waves (capture width). To achieve this, the complex interaction between the incident gravity waves, radiated waves and bulge waves is investigated. The new results establish the dependence of the capture width on absorption of the incident wave, energy loss owing to work done on the tube, imperfect tuning and the radiated wave. The new results reveal also that the wave–structure interactions govern the amplitude, phase, attenuation and wavenumber of the transient bulge wave. These predictions compare well with experimental observations.


Author(s):  
Yuzhu Li ◽  
Heather Peng ◽  
Wei Qiu ◽  
Brian Lundrigan ◽  
Tim Gardiner

SeaWEED (Sea Wave Energy Extraction Device) is a multi-body floating wave energy converter (WEC) with hinged joints developed by Grey Island Energy Inc. (GIE) in Canada. Initial conceptual studies have been carried out to evaluate the performance of the first generation device by testing a 1:16 scale model in a wave basin. The experimental results were compared with the numerical solutions. Based on the experimental studies, improvements were made and a second generation model with a new geometry of the hull and a new connection structure was developed. This paper is mainly focused on the numerical analysis and optimization of the second generation SeaWEED model. In the numerical studies, the hydraulic power take-off (PTO) system was simulated by a linear spring damper system coupled with the motion of the hinged bodies. The vertical hinge motion was computed at a series of wave periods using WAMIT. Optimization was focused on the PTO damping and the geometrical parameters in terms of the draft and the length of the truss structure between hinged bodies by using the response surface method. An optimal combination of length, draft and PTO damping was recommended for an intended operation location.


2021 ◽  
Author(s):  
Mojtaba Kamarlouei ◽  
Thiago S. Hallak ◽  
Jose F. Gaspar ◽  
C. Guedes Soares

Abstract This paper presents the numerical and experimental study of a new spring mechanism adapted to a cone-shaped point absorber wave energy converter (WEC). The WEC is intended to be hinged to a floating wind platform with a long arm to create a combined wind and wave harvesting concept. The main objective of the spring mechanism is to improve the platform restoring moments against the wind thrust forces, generated by the wind turbine while contributing to wave energy harvesting. However, the study is presented for the case where the WEC dynamics is investigated outside the platform and attached to a fixed frame, to validate the mathematical model of the WEC concept. Moreover, the impact on the power harvesting performance is investigated with and without negative springs in this scenario.


2021 ◽  
Vol 170 ◽  
pp. 1020-1039
Author(s):  
S.D.G.S.P. Gunawardane ◽  
G.A.C.T. Bandara ◽  
Young-Ho Lee

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 204
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Guang-Kai Wu ◽  
Chia-Che Wu

In this paper, a piezoelectric wave-energy converter (PWEC), consisting of a buoy, a frequency up-conversion mechanism, and a piezoelectric power-generator component, is developed. The frequency up-conversion mechanism consists of a gear train and geared-linkage mechanism, which converted lower frequencies of wave motion into higher frequencies of mechanical motion. The slider had a six-period displacement compared to the wave motion and was used to excite the piezoelectric power-generation component. Therefore, the operating frequency of the piezoelectric power-generation component was six times the frequency of the wave motion. The developed, flexible piezoelectric composite films of the generator component were used to generate electrical voltage. The piezoelectric film was composed of a copper/nickel foil as the substrate, lead–zirconium–titanium (PZT) material as the piezoelectric layer, and silver material as an upper-electrode layer. The sol-gel process was used to fabricate the PZT layer. The developed PWEC was tested in the wave flume at the Tainan Hydraulics Laboratory, Taiwan (THL). The maximum height and the minimum period were set to 100 mm and 1 s, respectively. The maximum voltage of the measured value was 2.8 V. The root-mean-square (RMS) voltage was 824 mV, which was measured through connection to an external 495 kΩ resistive load. The average electric power was 1.37 μW.


Sign in / Sign up

Export Citation Format

Share Document