A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence

2019 ◽  
Vol 53 (5) ◽  
pp. 1791-1805 ◽  
Author(s):  
Saeid Ghobadi

This paper extended the inverse Data Envelopment Analysis (DEA) to the framework of dynamic DEA. The following question is studied under inter-temporal dependence assumption: among a set of decision making units (DMUs), to what extent should the input (output) levels of the DMU change if the efficiency index of a DMU remains unchanged, yet the output (input) levels change? This question is answered using (periodic weak) Pareto solutions of multiple-objective linear programming (MOLP) problems in the framework of dynamic DEA. In this study, unlike other proposed methods, the simultaneous increase and decrease of the various input (output) levels are considered under inter-temporal dependence. In addition, a numerical example with real data is provided to illustrate the objective of this research.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
G. R. Jahanshahloo ◽  
F. Hosseinzadeh Lotfi ◽  
M. Rostamy-Malkhalifeh ◽  
S. Ghobadi

This paper studies the inverse data envelopment analysis using the nonradial enhanced Russell model. Necessary and sufficient conditions for inputs/outputs determination are introduced based on Pareto solutions of multiple-objective linear programming. In addition, an approach is investigated to identify extra input/lack output in each of input/output components (maximum/minimum reduction/increase amounts in each a of input/output components). In addition, the following question is addressed: if among a group of DMUs, it is required to increase inputs and outputs to a particular unit and assume that the DMU maintains its current efficiency level with respect to other DMUs, how much should the inputs and outputs of the DMU increase? This question is discussed as inverse data envelopment analysis problems, and a technique is suggested to answer this question. Necessary and sufficient conditions are established by employing Pareto solutions of multiple-objective linear programming as well.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 803
Author(s):  
Xiaoyin Hu ◽  
Jianshu Li ◽  
Xiaoya Li ◽  
Jinchuan Cui

In recent years, there has been an increasing interest in applying inverse data envelopment analysis (DEA) to a wide range of disciplines, and most applications have adopted radial-based inverse DEA models. However, results given by existing radial based inverse DEA models can be unreliable as they neglect slacks while evaluating decision-making units’ (DMUs) overall efficiency level, whereas classic radial DEA models measure the efficiency level through not only radial efficiency index but also slacks. This paper points out these disadvantages with a counterexample, where current inverse DEA models give results that outputs shall increase when inputs decrease. We show that these unreasonable results are the consequence of existing inverse DEA models’ failure in preserving DMU’s efficiency level. To rectify this problem, we propose a revised model for the situation where the investigated DMU has no slacks. Compared to existing radial inverse DEA models, our revised model can preserve radial efficiency index as well as eliminating all slacks, thus fulfilling the requirement of efficiency level invariant. Numerical examples are provided to illustrate the validity and limitations of the revised model.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
A. Barzegarinegad ◽  
G. Jahanshahloo ◽  
M. Rostamy-Malkhalifeh

We propose a procedure for ranking decision making units in data envelopment analysis, based on ideal and anti-ideal points in the production possibility set. Moreover, a model has been introduced to compute the performance of a decision making unit for these two points through using common set of weights. One of the best privileges of this method is that we can make ranking for all decision making units by solving only three programs, and also solving these programs is not related to numbers of decision making units. One of the other advantages of this procedure is to rank all the extreme and nonextreme efficient decision making units. In other words, the suggested ranking method tends to seek a set of common weights for all units to make them fully ranked. Finally, it was applied for different sets holding real data, and then it can be compared with other procedures.


Author(s):  
somayeh khezri ◽  
Akram Dehnokhalaji ◽  
Farhad Hosseinzadeh Lotfi

One of interesting subjects in Data Envelopment Analysis (DEA) is estimation of congestion of Decision Making Units (DMUs). Congestion is evidenced when decreases (increases) in some inputs re- sult in increases (decreases) in some outputs without worsening (im- proving) any other input/output. Most of the existing methods for measuring the congestion of DMUs utilize the traditional de nition of congestion and assume that inputs and outputs change with the same proportion. Therefore, the important question that arises is whether congestion will occur or not if the decision maker (DM) increases or de- creases the inputs dis-proportionally. This means that, the traditional de nition of congestion in DEA may be unable to measure the con- gestion of units with multiple inputs and outputs. This paper focuses on the directional congestion and proposes methods for recognizing the directional congestion using DEA models. To do this, we consider two di erent scenarios: (i) just the input direction is available. (ii) none of the input and output directions are available. For each scenario, we propose a method consists in systems of inequalities or linear pro- gramming problems for estimation of the directional congestion. The validity of the proposed methods are demonstrated utilizing two nu- merical examples.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hongjun Zhang ◽  
Youliang Zhang ◽  
Rui Zhang

Data envelopment analysis (DEA) is a powerful tool for evaluating and improving the performance of a set of decision-making units (DMUs). Empirically, there are usually many DMUs exhibiting “efficient” status in multi-input multioutput situations. However, it is not appropriate to assert that all efficient DMUs have equivalent performances. Actually, a DMU can be evaluated to be efficient as long as it performs best in a single dimension. This paper argues that an efficient DMU of a particular input-output proportion has its own specialty and may also perform poorly in some dimensions. Two DEA-based approaches are proposed to measure the dimension-specific efficiency of DMUs. One is measuring efficiency in multiplier-form by further processing the original multiplier DEA model. The other is calculating efficiency in envelopment-form by comparing with an ideal DMU. The proposed approaches are applied to 26 supermarkets in the city of Nanjing, China, which have provided new insights on efficiency for the managers.


Author(s):  
B. Vittal ◽  
Raju Nellutla ◽  
M. Krishna Reddy

In banking system the evaluation of productivity and performance is the key factor among the fundamental concepts in management. For identify the potential performance of a bank efficiency is the parameter to evaluate effective banking system. To measure the efficiency of a bank selection of appropriate input-output variables is one of the most vital issues. The suitable identification of input-output variables helps to create and identify model in order to evaluate the efficiency and analysis. The Data Envelopment Analysis (DEA) is a mathematical approach used to measure the efficiency of identified Decision Making Units (DMUs). The DEA is a methodology for evaluating the relative efficiency of peer decision making units of identified input/output variables for the financial year 2018-19. In this study the basic DEA CCR, BCC models used for measure the efficiency of DMUs. In addition to these models for minimize the input excess and output shortfall Slack Based Measure (SBM) efficiency used. The SBM is a scalar measure which directly deals with slacks of input, output variables which help in obtain improved efficiency score compare with previous model. The result from the analysis is


2019 ◽  
Vol 31 (3) ◽  
pp. 367-385 ◽  
Author(s):  
Khosro Soleimani-Chamkhorami ◽  
Farhad Hosseinzadeh Lotfi ◽  
Gholamreza Jahanshahloo ◽  
Mohsen Rostamy-Malkhalifeh

Abstract Inverse (DEA) is an approach to estimate the expected input/output variation levels when the efficiency score reminds unchanged. Essentially, finding most efficient decision-making units (DMUs) or ranking units is an important problem in DEA. A new ranking system for ordering extreme efficient units based on inverse DEA is introduced in this article. In the adopted method, here the amount of required increment of inputs by increasing the outputs of the unit under evaluation is obtained through the proposed models. By obtaining these variations, this proposed methodology enables the researcher to rank the efficient DMUs in an appropriate manner. Through the analytical theorem, it is proved that suggested models here are feasible. These newly introduced models are validated through a data set of commercial banks and a numerical example.


Author(s):  
Farzaneh Ghaffari ◽  
Morteza Haghiri

The nature of input-output relationships in general and ratio data in particular has important consequences for practitioners when the data envelopment analysis method is used to  measure technical efficiency of decision making units or production units. Since the data envelopment analysis approach was introduced several studies tried to develop the model from different aspects including when the model deals with ratio data. To date, none of these studies was able to address the aforementioned problem properly and as a result most of them suffered from a lack of clarity in the presence of input-and-output ratios. This study proposes a slacks-based measure of efficiency in the presence of ratio variable. Our approach deals directly with the input excess and the output shortfalls of the decision making units’ concerns, and as a result, improved measuring efficiency scores.


Author(s):  
Olcay Alpay ◽  
Elvan Aktürk Hayat

Determination of the input/output variables is an important issue in Data Envelopment Analysis (DEA). Researchers often refer to expert opinions in defining these variables. The purpose of this paper is to propose a new approach to determine the input/output variables, it is important to keep in mind that especially when there is no any priori information about variable selection. This new proposed technique is based on a theoretical method which is called “Copula”. Copula functions are used for modeling the dependency structure of the variables with each other. Also we use the local dependence function which analyzes the point dependency of variables of copulas to define the input/output variables. To illustrate the usefulness of the proposed approach, we conduct two applications using simulated and real data and compare the efficiencies in DEA. Our results show that new approach gives values close to perfection.


2011 ◽  
Vol 50 (4II) ◽  
pp. 685-698
Author(s):  
Samina Khalil

This paper aims at measuring the relative efficiency of the most polluting industry in terms of water pollution in Pakistan. The textile processing is country‘s leading sub sector in textile manufacturing with regard to value added production, export, employment, and foreign exchange earnings. The data envelopment analysis technique is employed to estimate the relative efficiency of decision making units that uses several inputs to produce desirable and undesirable outputs. The efficiency scores of all manufacturing units exhibit the environmental consciousness of few producers is which may be due to state regulations to control pollution but overall the situation is far from satisfactory. Effective measures and instruments are still needed to check the rising pollution levels in water resources discharged by textile processing industry of the country. JEL classification: L67, Q53 Keywords: Data Envelopment Analysis (DEA), Decision Making Unit (DMU), Relative Efficiency, Undesirable Output


Sign in / Sign up

Export Citation Format

Share Document