scholarly journals Delitpyrones: α-Pyrone Derivatives from a Freshwater Delitschia sp.

Planta Medica ◽  
2018 ◽  
Vol 85 (01) ◽  
pp. 62-71 ◽  
Author(s):  
José Rivera-Chávez ◽  
Tamam El-Elimat ◽  
Jacklyn Gallagher ◽  
Tyler Graf ◽  
Jacques Fournier ◽  
...  

AbstractIn research focused on the discovery of new chemical diversity from freshwater fungi, a peak library was built and evaluated against a prostate cancer cell line, E006AA-hT, which was derived from an African American, as this population is disproportionately affected by prostate cancer. The chemical study of the bioactive sample accessioned as G858 (Delitschia sp.) led to the isolation of eight new α-pyrone derivatives (1 – 7, and 11), as well as the new 3S*,4S*-7-ethyl-4,8-dihydroxy-3,6-dimethoxy-3,4-dihydronaphthalen-1(2H)-one (15). In addition, the known compounds 5-(3-S-hydroxybutyl)-4-methoxy-6-methyl-2H-pyran-2-one (8), 5-(3-oxobutyl)-4-methoxy-6-methyl-2H-pyran-2-one (9), pyrenocine I (10), 5-butyl-6-(hydroxymethyl)-4-methoxy-2H-pyran-2-one (12), sporidesmin A (13), 6-ethyl-2,7-dimethoxyjuglone (14), artrichitin (16), and lipopeptide 15G256ε (17) were also obtained. The structures of the new compounds were elucidated using a set of spectroscopic (NMR) and spectrometric (HRMS) methods. The absolute configuration of the most abundant member of each subclass of compounds was assigned through a modified Mosherʼs ester method. For 15, the relative configuration was assigned based on analysis of 3 J values. Compounds 1, 2, 5 – 14, 16, and 17 were evaluated against the cancer cell line E006AA-hT under hypoxic conditions, where compound 13 inhibited cell proliferation at a concentration of 2.5 µM.

2020 ◽  
Vol 45 (4) ◽  
pp. 423-428
Author(s):  
Ali Mert Özgönül ◽  
Aycan Aşık ◽  
Burak Durmaz ◽  
Ramin Aslaminabad ◽  
Cumhur Gündüz ◽  
...  

AbstractObjectivesRecently, phenolic compounds (quercetin, kaempferol, ellagic acid (EA), and myricetin) as natural sources have been suggested to be used for treatment and chemoprevention of prostate cancer. Since rosehip includes the above molecules in high concentration, we set out to investigate possible anti-proliferative effect of rosehip tea on the prostate cancer cell line.MethodsThe flavonol content of rosehip tea prepared at different temperatures and time intervals was determined first and then the antiproliferative effect of tea samples was established by adding tea samples to the prostate cancer cell line (VCaP and LNCaP).ResultsQuercetin was more effective in LNCaP cell than in VCaP cell (IC50 = 20 and 200 μM, respectively). The boiled fruit shredded at minute 7 showed the highest levels of quercetin, EA and kaempferol and the boiled fruit at minute 7 had the highest levels of kaempferol and EA. The tea samples were prepared in concentrations relevant to their IC50 values, added to the VCaP and LNCaP cell lines. The antiproliferative effect of rosehip tea on VCaP cells was slightly greater than that of LNCaP cells.ConclusionEach of the flavonols exhibits an antiproliferative effect. Our data clearly indicated that rosehip as a natural source of all flavonols had an antiproliferative effect on androgen-sensitive prostate cancer. Now that it is important to use natural sources in cancer, rosehip seems to be a promising natural product to be used to treat the prostate illness.


2007 ◽  
Vol 101 (3) ◽  
pp. 631-641 ◽  
Author(s):  
S. Koochekpour ◽  
T.-J. Lee ◽  
R. Wang ◽  
Y. Sun ◽  
N. Delorme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document