Validity and Reliability of a New Device to Measure Type of Actions in Indoor Sports

Author(s):  
Carlos Lago-Fuentes ◽  
Paolo Aiello ◽  
Mauro Testa ◽  
Iker Muñoz ◽  
Marcos Mecías Calvo

AbstractThe purpose of this study was to analyze the validity and the reliability of the intensity ranges, number of actions and changes of direction measured by a commercial inertial measurement unit. Eleven elite youth futsal players performed a circuit with different type of displacements as sprinting, running at low-medium intensity, standing up and changes of direction. Data recorded by the Overtraq system were compared with video-analyzer during the six trials of each player. Standard error mean, Intraclass Correlation Coeficient and Coefficient of variation, were calculated to analyze the reliability of the device, as well as the Root Mean Square Error and Confidence Interval with correlation of Pearson for its validity. The results reported good validity for three intensity ranges (R2>0.7) with high reliability (Intraclass Correlation Coeficient: 0.8–0.9), especially for high intensity actions (Intraclass Correlation Coeficient: 0.95, Coefficient of Variation: 3.06%). Furthermore, the validity for the number of different actions was almost perfect (96.3–100%), with only small differences regarding changes of activity (mean error: 2.0%). The Overtraq system can be considered as a valid and reliable technology for measuring and monitoring actions at different intensities and changes of direction in futsal, likewise common actions for other indoor sports.

Author(s):  
Steffen Held ◽  
Ludwig Rappelt ◽  
Jan-Philip Deutsch ◽  
Lars Donath

The accurate assessment of the mean concentric barbell velocity (MCV) and its displacement are crucial aspects of resistance training. Therefore, the validity and reliability indicators of an easy-to-use inertial measurement unit (VmaxPro®) were examined. Nineteen trained males (23.1 ± 3.2 years, 1.78 ± 0.08 m, 75.8 ± 9.8 kg; Squat 1-Repetition maximum (1RM): 114.8 ± 24.5 kg) performed squats and hip thrusts (3–5 sets, 30 repetitions total, 75% 1RM) on two separate days. The MCV and displacement were simultaneously measured using VmaxPro® and a linear position transducer (Speed4Lift®). Good to excellent intraclass correlation coefficients (0.91 < ICC < 0.96) with a small systematic bias (p < 0.001; ηp2 < 0.50) for squats (0.01 ± 0.04 m·s−1) and hip thrusts (0.01 ± 0.05 m·s−1) and a low limit of agreement (LoA < 0.12 m·s−1) indicated an acceptable validity. The within- and between-day reliability of the MCV revealed good ICCs (0.55 < ICC < 0.91) and a low LoA (<0.16 m·s−1). Although the displacement revealed a systematic bias during squats (p < 0.001; ηp2 < 0.10; 3.4 ± 3.4 cm), no bias was detectable during hip thrusts (p = 0.784; ηp2 < 0.001; 0.3 ± 3.3 cm). The displacement showed moderate to good ICCs (0.43 to 0.95) but a high LoA (7.8 to 10.7 cm) for the validity and (within- and between-day) reliability of squats and hip thrusts. The VmaxPro® is considered to be a valid and reliable tool for the MCV assessment.


2019 ◽  
Vol 11 (6) ◽  
pp. 535-542 ◽  
Author(s):  
Nels D. Leafblad ◽  
Dirk R. Larson ◽  
Glenn S. Fleisig ◽  
Stan Conte ◽  
Stephen A. Fealy ◽  
...  

Background: The variability of throwing metrics, particularly elbow torque and ball velocity, during structured long-toss programs is unknown. Hypotheses: (1) Elbow torque and ball velocity would increase as throwers progressed through a structured long-toss program and (2) intrathrower reliability would be high while interthrower reliability would be variable. Study Design: Descriptive laboratory study. Level of Evidence: Level 3. Methods: Sixty healthy high school and collegiate pitchers participated in a structured long-toss program while wearing a validated inertial measurement unit, which measured arm slot, arm velocity, shoulder rotation, and elbow varus torque. Ball velocity was assessed by radar gun. These metrics were compared within and between all pitchers at 90, 120, 150, and 180 ft and maximum effort mound pitching. Intra- and interthrower reliabilities were calculated for each metric at every stage of the program. Results: Ball velocity significantly changed at each progressive throwing distance, but elbow torque did not. Pitching from the mound did not place more torque on the elbow than long-toss throwing from 120 ft and beyond. Intrathrower reliability was excellent (intraclass correlation coefficient >0.75) throughout the progressive long-toss program, especially on the mound. Ninety-one percent of throwers had acceptable interthrower reliability (coefficient of variation <5%) for ball velocity, whereas only 79% of throwers had acceptable interthrower reliability for elbow torque. Conclusion: Based on trends in elbow torque, it may be practical to incorporate pitching from the mound earlier in the program (once a player is comfortable throwing from 120 ft). Ball velocity and elbow torque do not necessarily correlate with one another, so a degree of caution should be exercised when using radar guns to estimate elbow torque. Given the variability in elbow torque between throwers, some athletes would likely benefit from an individualized throwing program. Clinical Relevance: Increased ball velocity does not necessarily equate to increased elbow torque in long-toss. Some individuals would likely benefit from individualized long-toss programs for rehabilitation.


2020 ◽  
pp. 1-4
Author(s):  
Hannah W. Tucker ◽  
Emily R. Tobin ◽  
Matthew F. Moran

Context: Performance on single-leg hopping (SLH) assessments is commonly included within return-to-sport criteria for rehabilitating athletes. Triaxial accelerometers have been used to quantify impact loading in a variety of movements, including hopping; however, they have never been attached to the tibia during SLH, and their method of fixation has not been investigated. Objective: The purpose of this study was to quantify triaxial accelerations and evaluate the influence of the fixation method of a lightweight inertial measurement unit (Blue Trident) mounted to the tibia during SLH performance. Design: Single cohort, repeated-measures experimental design. Participants: Sixteen healthy participants (10 females and 6 males; 20 [0.9] y; 1.67 [0.08] m; 66.0 [8.5] kg) met the inclusion criteria, volunteered, and completed this study. Interventions: Participants performed 2 sets of 3 SLH trials with an inertial measurement unit (1500 Hz) fixated to the tibia, each set with 1 of 2 attachment methods (double-sided tape [DST] with athletic tape and silicon strap [SS] with Velcro adhesion). Main Outcome Measures: Hop distance, peak tibial acceleration (PTA), time to PTA, and the acceleration slope were assessed during each hop landing. Results: Repeated-measures analysis of variance determined no significant effect of the attachment method on hop metrics (P = .252). Across 3 trials, both fixation methods (DST and SS) had excellent reliability values (intraclass correlation coefficient: .868–.941) for PTA and acceleration slope but not for time to PTA (intraclass correlation coefficient: .397–.768). The PTA for DST (27.22 [7.94] g) and SS (26.21 [10.48] g) was comparable and had a moderate, positive relationship (DST: r = .72, P < .01; SS: r = .77, P < .01) to SLH distance. Conclusions: Tibial inertial measurement units with triaxial accelerometers can reliably assess PTA during performance of the SLH, and SS is a viable alternative tibial attachment to DST.


2021 ◽  
Author(s):  
Christopher Bailey ◽  
Thomas Uchida ◽  
Julie Nantel ◽  
Ryan Graham

Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes. Joint kinematics were estimated by IMU- and optoelectronic-based models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each angle over 200 continuous strides, and evaluated model accuracy (e.g., RMSD: root mean square difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to within-participant gait responses (effects of Speed and Swing). RMSDs of joint angles were 1.7–7.5° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good–excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but were poor–moderate for DFAα and SaEn. Modeled Speed and Swing responses for ROM, meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of joint angles and several motor variability features.


2018 ◽  
Vol 42 (6) ◽  
pp. 872-883 ◽  
Author(s):  
Young-Shin Cho ◽  
Seong-Ho Jang ◽  
Jae-Sung Cho ◽  
Mi-Jung Kim ◽  
Hyeok Dong Lee ◽  
...  

Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 661
Author(s):  
Cristina Carmona-Pérez ◽  
Alberto Pérez-Ruiz ◽  
Juan L. Garrido-Castro ◽  
Francisco Torres Vidal ◽  
Sandra Alcaraz-Clariana ◽  
...  

Objective: The aim of this study was to design and propose a new test based on inertial measurement unit (IMU) technology, for measuring cervical posture and motor control in children with cerebral palsy (CP) and to evaluate its validity and reliability. Methods: Twenty-four individuals with CP (4–14 years) and 24 gender- and age-matched controls were evaluated with a new test based on IMU technology to identify and measure any movement in the three spatial planes while the individual is seated watching a two-minute video. An ellipse was obtained encompassing 95% of the flexion/extension and rotation movements in the sagittal and transversal planes. The protocol was repeated on two occasions separated by 3 to 5 days. Construct and concurrent validity were assessed by determining the discriminant capacity of the new test and by identifying associations between functional measures and the new test outcomes. Relative reliability was determined using the intraclass correlation coefficient (ICC) for test–retest data. Absolute reliability was obtained by the standard error of measurement (SEM) and the Minimum Detectable Change at a 90% confidence level (MDC90). Results: The discriminant capacity of the area and both dimensions of the new test was high (Area Under the Curve ≈ 0.8), and consistent multiple regression models were identified to explain functional measures with new test results and sociodemographic data. A consistent trend of ICCs higher than 0.8 was identified for CP individuals. Finally, the SEM can be considered low in both groups, although the high variability among individuals determined some high MDC90 values, mainly in the CP group. Conclusions: The new test, based on IMU data, is valid and reliable for evaluating posture and motor control in children with CP.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7690
Author(s):  
Christopher A. Bailey ◽  
Thomas K. Uchida ◽  
Julie Nantel ◽  
Ryan B. Graham

Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes. Trunk, pelvis, and lower-limb joint kinematics were estimated by IMU- and optoelectronic-based models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each angle over 200 continuous strides, and evaluated model accuracy (RMSD: root mean square difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to within-participant gait responses (effects of speed and swing). RMSDs of joint angles were 1.7–7.5° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good to excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but were poor to moderate for DFAα and SaEn. Modelled speed and swing responses for ROM, meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of joint angle time series, ROM in the primary plane of motion, magnitude of variability, and local dynamic stability.


Sign in / Sign up

Export Citation Format

Share Document