87 Pediatric ISOLA (DePuy Spine) Instrumentation

2021 ◽  
pp. 1-7
Author(s):  
Marko Jug

<b><i>Introduction:</i></b> In the case of tumor resection in the upper cervical spine, a multilevel laminectomy with instrumented fixation is required to prevent kyphotic deformity and myelopathy. Nevertheless, instrumentation of the cervical spine in children under the age of 8 years is challenging due to anatomical considerations and unavailability of specific instrumentation. <b><i>Case Presentation:</i></b> We present a case of 3D-printed model-assisted cervical spine instrumentation in a 4-year-old child with post-laminectomy kyphotic decompensation of the cervical spine and spinal cord injury 1 year after medulloblastoma metastasis resection in the upper cervical spine. Due to unavailability of specific instrumentation, 3D virtual planning was used to assess and plan posterior cervical fixation. Fixation with 3.5 mm lateral mass and isthmic screws was suggested and the feasibility of fixation was confirmed “in vitro” in a 3D-printed model preoperatively to reduce the possibility of intraoperative implant-spine mismatch. Intraoperative conditions completely resembled the preoperative plan and 3.5 mm polyaxial screws were successfully used as planned. Postoperatively the child made a complete neurological recovery and 2 years after the instrumented fusion is still disease free with no signs of spinal decompensation. <b><i>Discussion/Conclusion:</i></b> Our case shows that posterior cervical fixation with the conventional screw-rod technique in a 4-year-old child is feasible, but we suggest that suitability and positioning of the chosen implants are preoperatively assessed in a printed 3D model. In addition, a printed 3D model offers the possibility to better visualize and sense spinal anatomy “in vivo,” thereby helping screw placement and reducing the chance for intraoperative complications, especially in the absence of intraoperative spinal navigation.


2011 ◽  
Vol 14 (6) ◽  
pp. 715-718 ◽  
Author(s):  
David A. Wilson ◽  
David J. Fusco ◽  
Nicholas Theodore

Iatrogenic vascular injury is a rare but potentially devastating complication of cervical spine instrumentation. The authors report on a patient who developed an anterior spinal artery pseudoaneurysm associated with delayed subarachnoid hemorrhage after undergoing odontoid screw placement 14 months earlier. This 86-year-old man presented with spontaneous subarachnoid hemorrhage (Fisher Grade 4) and full motor strength on neurological examination. Imaging demonstrated pseudarthrosis of the odontoid process, extension of the odontoid screw beyond the posterior cortex of the dens, and a pseudoaneurysm arising from an adjacent branch of the anterior spinal artery. Due to the aneurysm's location and lack of active extravasation, endovascular treatment was not attempted. Posterior C1–2 fusion was performed to treat radiographic and clinical instability of the C1–2 joint. Postoperatively, the patient's motor function remained intact. Almost all cases of vascular injury related to cervical spine instrumentation are recognized at surgery. To the authors' knowledge, this is the first report of delayed vascular injury following an uncomplicated cervical fixation. This case further suggests that the risk of this phenomenon may be elevated in cases of failed fusion.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Guang-Ting Cong ◽  
Avani Vaishnav ◽  
Joseph Barbera ◽  
Hiroshi Kumagai ◽  
James Dowdell ◽  
...  

Abstract INTRODUCTION Posterior spinal instrumentation for fusion using intraoperative computed tomography (CT) navigation is gaining traction as an alternative to the conventional two-dimensional fluoroscopic-guided approach to percutaneous pedicle screw placement. However, few studies to date have directly compared outcomes of these 2 minimally invasive instrumentation methods. METHODS A consecutive cohort of patients undergoing primary percutaneous posterior lumbar spine instrumentation for spine fusion was retrospectively reviewed. Revision surgeries or cases converted to open were excluded. Accuracy of screw placement was assessed using a postoperative CT scan with blinding to the surgical methods used. The Gertzbein-Robbins classification was used to grade cortical breach: Grade 0 (<0 mm cortical breach), Grade I (<2 mm), Grade II (2-4 mm), Grade III (4-6 mm), and Grade IV (>6 mm). RESULTS CT navigation was found to significantly improve accuracy of screw placement (P < .022). There was significantly more facet violation of the unfused level in the fluoroscopy group vs the CT group (9% vs 0.5%; P < .0001). There was also a higher proportion of poor screw placement in the fluoroscopy group (10.1% vs 3.6%). No statistical difference was found in the rate of tip breach, inferomedial breach, or lateral breach. Regression analysis showed that fluoroscopy had twice the odds of incurring poor screw placement as compared to CT navigation. CONCLUSION This radiographic study comparing screw placement in minimally invasive fluoroscopy- vs CT navigation-guided lumbar spine instrumentation provides evidence that CT navigation significantly improves accuracy of screw placement, especially in optimizing the screw trajectory so as to avoid facet violation. Long-term follow-up studies should be performed to ascertain whether this difference can contribute to an improvement in clinical outcomes.


Author(s):  
Paul Kraemer ◽  
Rick Bransford ◽  
Jens R. Chapman

2021 ◽  
Vol 145 ◽  
pp. 178-182
Author(s):  
Aria Mahtabfar ◽  
Jacob Mazza ◽  
Daniel Franco ◽  
Glenn A. Gonzalez ◽  
Kevin Hines ◽  
...  

Spine ◽  
1994 ◽  
Vol 19 (24) ◽  
pp. 2780-2785 ◽  
Author(s):  
Blair Calancie ◽  
Parley Madsen ◽  
Nathan Lebwohl

2017 ◽  
Vol 42 (5) ◽  
pp. E4 ◽  
Author(s):  
Timur M. Urakov ◽  
Ken Hsuan-kan Chang ◽  
S. Shelby Burks ◽  
Michael Y. Wang

OBJECTIVESpine surgery is complex and involves various steps. Current robotic technology is mostly aimed at assisting with pedicle screw insertion. This report evaluates the feasibility of robot-assisted pedicle instrumentation in an academic environment with the involvement of residents and fellows.METHODSThe Renaissance Guidance System was used to plan and execute pedicle screw placement in open and percutaneous consecutive cases performed in the period of December 2015 to December 2016. The database was reviewed to assess the usability of the robot by neurosurgical trainees. Outcome measures included time per screw, fluoroscopy time, breached screws, and other complications. Screw placement was assessed in patients with postoperative CT studies. The speed of screw placement and fluoroscopy time were collected at the time of surgery by personnel affiliated with the robot’s manufacturer. Complication and imaging data were reviewed retrospectively.RESULTSA total of 306 pedicle screws were inserted in 30 patients with robot guidance. The average time for junior residents was 4.4 min/screw and for senior residents and fellows, 4.02 min/screw (p = 0.61). Among the residents dedicated to spine surgery, the average speed was 3.84 min/screw, while nondedicated residents took 4.5 min/screw (p = 0.41). Evaluation of breached screws revealed some of the pitfalls in using the robot.CONCLUSIONSNo significant difference regarding the speed of pedicle instrumentation was detected between the operators’ years of experience or dedication to spine surgery, although more participants are required to investigate this completely. On the other hand, there was a trend toward improved efficiency with more cases performed. To the authors’ knowledge, this is the first reported academic experience with robot-assisted spine instrumentation.


2000 ◽  
Vol 9 (S1) ◽  
pp. S126-S130 ◽  
Author(s):  
G. L. Lowery ◽  
S. S. Kulkarni

2016 ◽  
Vol 6 (8) ◽  
pp. 765-770 ◽  
Author(s):  
Amro F. Al-Habib ◽  
Salah Al-Akkad

Study Design Interventional human cadaver study. Objective Intraoperative three-dimensional (3-D)-guided navigation improves spine instrumentation accuracy. However, image acquisition may need to be repeated with segment hypermobility or distant target from reference frame (RF). The current study evaluates the usefulness of internal metal fiducials (IMFs) as surface references in enhancing registration accuracy and avoiding repeating imaging. Methods Six fresh-frozen cadaveric human torsos were utilized. Posterior C1–T2 exposure was done, and three IMFs were inserted per level; intraoperative 3-D images were then acquired. Two registration methods were utilized: autoregistration (AR, group 1) and point registration using IMF (IMFR, group 2). Registration accuracy was checked by identifying IMFs in both groups. Pedicle screws inserted into C2, C4, C5, and C7 based on the two registration methods (three cadavers each) with RF on C7 and then on C2. Results The mean registration error was lower with IMFR compared with AR (0.35 ± 0.5 mm versus 2.02 ± 0.85 mm, p = 0.0001). Overall, 34 pedicle screws were inserted (AR, 18; IMFR, 16). Final screw placement was comparable using both techniques ( p = 0.58). Lateral screws violations were observed in four IMFR screws (1 to 2 mm) as compared with five in AR group (2 to 3 mm). Reregistration after moving RF to C2 was possible using surface screws in IMFR group, thus avoiding new 3-D image acquisition. Conclusion During intraoperative 3-D navigation in spine procedures, surface fiducial registration using IMF provided superior accuracy over automated registration. It allowed repeat registration without repeating radiation during long spine segment instrumentations. More studies are needed to clarify both practical and clinical application of this method.


Sign in / Sign up

Export Citation Format

Share Document