24 Success Rates and Time: Can Three-Dimensional Navigational Imaging Improve the Success and Time Required for Minimally Invasive Surgery and Minimize Radiation Exposure to Those in the OR Suite?

2014 ◽  
Vol 5 ◽  
pp. MEI.S13342
Author(s):  
Francesca Destro ◽  
Noemi Cantone ◽  
Mario Lima

Minimally invasive surgery (MIS) is a relatively new surgery comprising various procedures performed with special miniaturized instruments and imaging reproduction systems. Technological advances have made MIS an efficient, safe, and applicable tool for pediatric surgeons with unquestionable advantages. The recent introduction of three-dimensional (3D) high definition systems has been advocated in order to overcome some of the problems related to standard MIS visual limitations. This short paper recapitulates the necessity to minimize MIS visualization limitations and reports the characteristics of new laparoscopic 3D systems.


Author(s):  
Kenoki Ohuchida ◽  
Makoto Hashizume

Recently, a robotic system was developed in the biomedical field to support minimally invasive surgery. The popularity of minimally invasive surgery has surged rapidly because of endoscopic procedures. In endoscopic surgery, surgical procedures are performed within a body cavity and visualized with laparoscopy or thoracoscopy. Since the initial laparoscopic cholecystectomy was performed in 1987, the implications for endoscopic procedures have continuously expanded, and endoscopic surgery is currently the standard for an increasing number of operations. Advances in laparoscopic surgery have led to less postoperative pain, shorter hospital stays, and an earlier return to work for many patients. However, performing laparoscopic procedures requires several skills that have never been required for conventional open surgery. The surgeon needs to coordinate his/her eyes and hands and acquire a skillful manner using long-shaft instruments as well as mentally interpret a two-dimensional environment as a three-dimensional one. Because learning such skills is stressful for most surgeons, performing a laparoscopic procedure is more physically and mentally demanding than performing an open procedure.


Author(s):  
J Kang ◽  
K Y Lee

Minimally invasive surgery has become mainstream in surgical management of colorectal disease. Based on evidence of oncologic safety and benefit to patients, laparoscopic colorectal surgery is regarded as a successful alternative to open surgery. Since the introduction of the da Vinci® system as another tool for minimally invasive surgery, there have been several reports regarding the feasibility and safety of the system. The authors looked at their experience with 412 robotic colorectal surgeries and found that it was feasible and safe. Incidence of operation-related morbidity was around 11 per cent and system-related problems were 2.4 per cent. There was no operation-related or system-related mortality. From a technological perspective, robotic surgery has several advantages over laparoscopic surgery, including a magnifying view with a three-dimensional image, a stable camera platform, and instruments with Endowrist® technology that allow for seven degrees of freedom of movement. However, there is still room for improvement. The revolution of robotic technology can aid in the realization of a dream: a smaller, cheaper, and more sophisticated robotic system, which will further facilitate the widespread application of robotic surgery to colorectal disease.


2014 ◽  
Vol 533 ◽  
pp. 60-63
Author(s):  
Yi Zhong Wang ◽  
Xiao Qiang Zhao ◽  
Yong Hong Wu ◽  
Ting Wei Niu ◽  
Qiao Jun Liu ◽  
...  

In minimally invasive surgery, needle is one of the most common devices that used to conduct different diagnosis and treatment tasks. In this paper, coordinates of articulated needle while being steered are studied. After analyzing bending directions, a simplified model of articulated needle is established. Accordingly, formulas for calculating the coordinates of important points in an articulated needle are got in both two dimensional and three dimensional spaces. By providing a theoretical basis for the steering of an articulated needle, its navigation accuracy can be improved.


2018 ◽  
Vol 12 (3) ◽  
Author(s):  
Aimée Sakes ◽  
Awaz Ali ◽  
Jovana Janjic ◽  
Paul Breedveld

Even though technological advances have increased the application area of minimally invasive surgery (MIS), there are still hurdles to allow for widespread adoption for more complex procedures. The development of steerable instruments, in which the surgeon can alter the tip orientation, has increased the application area of MIS, but they are bulky, which limits their ability to navigate through narrow environments, and complex, which complicates miniaturization. Furthermore, they do not allow for navigating through complex anatomies. In an effort to improve the dexterity of the MIS instruments, while minimizing the outer dimensions, the previously developed cable-ring mechanism was redesigned, resulting in the thinnest, Ø 2 mm (Ø 1 mm lumen), eight degrees-of-freedom (DOF) multisteerable tip for MIS to date. The multisteerable tip consists of four steerable segments of 2DOF stackable elements allowing for ±90 deg articulation, as well the construction of complex shapes, actuated by 16 Ø 0.2 mm stainless steel cables. In a proof-of-principle experiment, an ultrasound transducer and optical shape sensing (OSS) fiber were inserted in the lumen, and the multisteerable tip was used to perform scanning motions in order to reconstruct a wire frame in three-dimensional (3D). This configuration could in future be used to safely navigate through delicate environments and allow for tissue characterization. Therefore, the multisteerable tip has the potential to increase the application area of MIS in future, as it allows for improved dexterity, the ability to guide several tip tools toward the operation area, and the ability to navigate through tight anatomies.


2009 ◽  
Vol 11 (3) ◽  
pp. 375-376 ◽  
Author(s):  
Brian D. Giordano ◽  
Glenn R. Rechtine ◽  
Thomas L. Morgan

Sign in / Sign up

Export Citation Format

Share Document