Novel Miniature Tip Design for Enhancing Dexterity in Minimally Invasive Surgery

2018 ◽  
Vol 12 (3) ◽  
Author(s):  
Aimée Sakes ◽  
Awaz Ali ◽  
Jovana Janjic ◽  
Paul Breedveld

Even though technological advances have increased the application area of minimally invasive surgery (MIS), there are still hurdles to allow for widespread adoption for more complex procedures. The development of steerable instruments, in which the surgeon can alter the tip orientation, has increased the application area of MIS, but they are bulky, which limits their ability to navigate through narrow environments, and complex, which complicates miniaturization. Furthermore, they do not allow for navigating through complex anatomies. In an effort to improve the dexterity of the MIS instruments, while minimizing the outer dimensions, the previously developed cable-ring mechanism was redesigned, resulting in the thinnest, Ø 2 mm (Ø 1 mm lumen), eight degrees-of-freedom (DOF) multisteerable tip for MIS to date. The multisteerable tip consists of four steerable segments of 2DOF stackable elements allowing for ±90 deg articulation, as well the construction of complex shapes, actuated by 16 Ø 0.2 mm stainless steel cables. In a proof-of-principle experiment, an ultrasound transducer and optical shape sensing (OSS) fiber were inserted in the lumen, and the multisteerable tip was used to perform scanning motions in order to reconstruct a wire frame in three-dimensional (3D). This configuration could in future be used to safely navigate through delicate environments and allow for tissue characterization. Therefore, the multisteerable tip has the potential to increase the application area of MIS in future, as it allows for improved dexterity, the ability to guide several tip tools toward the operation area, and the ability to navigate through tight anatomies.

2014 ◽  
Vol 5 ◽  
pp. MEI.S13342
Author(s):  
Francesca Destro ◽  
Noemi Cantone ◽  
Mario Lima

Minimally invasive surgery (MIS) is a relatively new surgery comprising various procedures performed with special miniaturized instruments and imaging reproduction systems. Technological advances have made MIS an efficient, safe, and applicable tool for pediatric surgeons with unquestionable advantages. The recent introduction of three-dimensional (3D) high definition systems has been advocated in order to overcome some of the problems related to standard MIS visual limitations. This short paper recapitulates the necessity to minimize MIS visualization limitations and reports the characteristics of new laparoscopic 3D systems.


Author(s):  
J Kang ◽  
K Y Lee

Minimally invasive surgery has become mainstream in surgical management of colorectal disease. Based on evidence of oncologic safety and benefit to patients, laparoscopic colorectal surgery is regarded as a successful alternative to open surgery. Since the introduction of the da Vinci® system as another tool for minimally invasive surgery, there have been several reports regarding the feasibility and safety of the system. The authors looked at their experience with 412 robotic colorectal surgeries and found that it was feasible and safe. Incidence of operation-related morbidity was around 11 per cent and system-related problems were 2.4 per cent. There was no operation-related or system-related mortality. From a technological perspective, robotic surgery has several advantages over laparoscopic surgery, including a magnifying view with a three-dimensional image, a stable camera platform, and instruments with Endowrist® technology that allow for seven degrees of freedom of movement. However, there is still room for improvement. The revolution of robotic technology can aid in the realization of a dream: a smaller, cheaper, and more sophisticated robotic system, which will further facilitate the widespread application of robotic surgery to colorectal disease.


Author(s):  
Paul WJ Henselmans ◽  
Gerwin Smit ◽  
Paul Breedveld

One of the most prominent drivers in the development of surgical procedures is the will to reduce their invasiveness, attested by minimally invasive surgery being the gold standards in many surgical procedures and natural orifices transluminal endoscopic surgery gaining acceptance. A logical next step in this pursuit is the introduction of hyper-redundant instruments that can insert themselves along multi-curved paths referred to as Follow-the-Leader motion. In the current state of the art, two different types of Follow-the-Leader instruments can be distinguished. One type of instrument is robotized; the movements of the shaft are controlled from outside the patient by actuators, for example, electric motors, and a controller storing a virtual track of the desired path. The other type of instrument is more mechanical; the movements of the shaft are controlled from inside the patient by a physical track that guides the shaft along the desired path. While in the robotized approach all degrees of freedom of the shaft require an individual actuator, the mechanical approach makes the number of degrees of freedom independent from the number of actuators. A desirable feature as an increasing number of actuators will inevitably drive up costs and increase the footprint of an instrument. Building the physical track inside the body does, however, impede miniaturization of the shaft’s diameter. This article introduces a new fully mechanical approach for Follow-the-Leader motion using a pre-determined physical track that is placed outside the body. This new approach was validated with a prototype called MemoFlex, which supports a Ø5 mm shaft (standard size in minimally invasive surgery) that contains 28-degrees-of-freedom and utilizes a simple steel rod as its physical track. Even though the performance of the MemoFlex leaves room for improvement, especially when following multiple curves, it does validate the proposed concept for Follow-the-Leader motion in three-dimensional space.


2012 ◽  
Vol 6 (2) ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

A crucial design challenge in minimally invasive surgical (MIS) robots is the provision of a fully decoupled four degrees-of-freedom (4-DOF) remote center-of-motion (RCM) for surgical instruments. In this paper, we present a new parallel manipulator that can generate a 4-DOF RCM over its end-effector and these four DOFs are fully decoupled, i.e., each of them can be independently controlled by one corresponding actuated joint. First, we revisit the remote center-of-motion for MIS robots and introduce a projective displacement representation for coping with this special kinematics. Next, we present the proposed new parallel manipulator structure and study its geometry and motion decouplebility. Accordingly, we solve the inverse kinematics problem by taking the advantage of motion decouplebility. Then, via the screw system approach, we carry out the Jacobian analysis for the manipulator, by which the singular configurations are identified. Finally, we analyze the reachable and collision-free workspaces of the proposed manipulator and conclude the feasibility of this manipulator for the application in minimally invasive surgery.


Author(s):  
J. E. N. Jaspers ◽  
M. Shehata ◽  
F. Wijkhuizen ◽  
J. L. Herder ◽  
C. A. Grimbergen

Performing complex tasks in Minimally Invasive Surgery (MIS) is demanding due to a disturbed hand-eye co-ordination, the use of non-ergonomic instruments with limited degrees of freedom (DOFs) and a lack of force feedback. Robotic telemanipulatory systems enhance surgical dexterity by providing up to 7 DOFs. They allow the surgeon to operate in an ergonomically favorable position with more intuitive manipulation of the instruments. Commercially available robotic systems, however, are very bulky, expensive and do not provide any force feedback. The aim of our study was to develop a simple mechanical manipulator for MIS. When manipulating the handle of the device, the surgeon’s wrist and grasping movements are directly transmitted to the deflectable instrument tip in 7 DOFs. The manipulator consists of a parallelogram mechanism with steel wires. First phantom experience indicated that the system functions properly. The MIM provides some force feedback improving safety. A set of MIMs seems to be an economical and compact alternative for robotic systems.


Author(s):  
Kenoki Ohuchida ◽  
Makoto Hashizume

Recently, a robotic system was developed in the biomedical field to support minimally invasive surgery. The popularity of minimally invasive surgery has surged rapidly because of endoscopic procedures. In endoscopic surgery, surgical procedures are performed within a body cavity and visualized with laparoscopy or thoracoscopy. Since the initial laparoscopic cholecystectomy was performed in 1987, the implications for endoscopic procedures have continuously expanded, and endoscopic surgery is currently the standard for an increasing number of operations. Advances in laparoscopic surgery have led to less postoperative pain, shorter hospital stays, and an earlier return to work for many patients. However, performing laparoscopic procedures requires several skills that have never been required for conventional open surgery. The surgeon needs to coordinate his/her eyes and hands and acquire a skillful manner using long-shaft instruments as well as mentally interpret a two-dimensional environment as a three-dimensional one. Because learning such skills is stressful for most surgeons, performing a laparoscopic procedure is more physically and mentally demanding than performing an open procedure.


Author(s):  
Pierre Lorre ◽  
Frédéric Monet ◽  
Matthieu Gauthier ◽  
Arthur Poiffaut ◽  
Anthony Roberge ◽  
...  

2014 ◽  
Vol 533 ◽  
pp. 60-63
Author(s):  
Yi Zhong Wang ◽  
Xiao Qiang Zhao ◽  
Yong Hong Wu ◽  
Ting Wei Niu ◽  
Qiao Jun Liu ◽  
...  

In minimally invasive surgery, needle is one of the most common devices that used to conduct different diagnosis and treatment tasks. In this paper, coordinates of articulated needle while being steered are studied. After analyzing bending directions, a simplified model of articulated needle is established. Accordingly, formulas for calculating the coordinates of important points in an articulated needle are got in both two dimensional and three dimensional spaces. By providing a theoretical basis for the steering of an articulated needle, its navigation accuracy can be improved.


Sign in / Sign up

Export Citation Format

Share Document