Effect of catecholamine depletion and denervation on neuropeptide Y(NPY) and tyrosine-hydroxylase (TH) mRNA levels in rat sympathetic ganglia

2009 ◽  
Vol 102 (01) ◽  
pp. 54-59 ◽  
Author(s):  
J. Hänze ◽  
W. Kummer ◽  
M. Haass ◽  
R. Lang
1989 ◽  
Vol 37 (1) ◽  
pp. 1-5 ◽  
Author(s):  
G M Jonakait ◽  
M Rosenthal ◽  
J I Morrell

In situ hybridization was used to examine the appearance of mRNA specific for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine (CA) biosynthesis, in neural crest derivatives of the rat embryo. These derivatives include sympathetic ganglia and transient catecholaminergic cells of embryonic intestine. Messenger RNA is first detected in sympathetic ganglia at E11.5, the age corresponding to the initial immunocytochemical expression of TH protein. In older embryos increased accumulation of TH-specific mRNA in sympathetic ganglia parallels the increase in TH immunoreactivity. By contrast, mRNA for TH is difficult to detect in embryonic intestines at E11.5 but is found instead in cells clustered at the dorsal boundaries of the pharynx and foregut. Cells expressing TH mRNA are infrequently found in embryonic intestines at any age, even though TH protein is immunohistochemically apparent. Treatment of pregnant rats with doses of reserpine, known to increase circulating levels of glucocorticoid hormones and prolong the expression of TH protein in embryonic gut cells, dramatically but transiently increases the number of gut cells at E12.5 with detectable TH mRNA. After E13.5 TH mRNA is undetectable even in reserpine-treated guts. Reserpine treatment also increases the labeling density in sympathetic ganglia. Taken together, these data are consistent with the hypothesis that the microenvironment of the embryonic intestine affects gene expression directly to alter phenotype. Moreover, although reserpine administration briefly increases TH mRNA levels, the effect is short-lived and does not alter neurotransmitter phenotypic conversion.


1991 ◽  
Vol 261 (6) ◽  
pp. R1455-R1460
Author(s):  
T. L. Krukoff ◽  
Y. Zheng

The gene expression of tyrosine hydroxylase (TH) and neuropeptide Y (NPY) was studied in prevertebral ganglia and adrenal glands of adult male rats during the development of renal hypertension (removal of 1 kidney/constriction of other kidney). Only tissues from rats with arterial pressures significantly elevated by day 3 were compared with those from controls. At 4 or 5 days after renal surgery, superior cervical ganglia, celiac-mesenteric plexus, adrenal glands, and stellate ganglia were surgically removed from nonfixed rats for Northern blot analysis or from perfusion-fixed rats for in situ hybridization. In all tissues, levels of TH mRNA were decreased in hypertensive rats; cells with decreased levels were scattered throughout each tissue. In contrast, levels of NPY mRNA were unchanged in hypertensive rats compared with controls. Changes in TH mRNA levels suggest that the developing phase of renal hypertension is associated with a decrease in sympathetic outflow to the periphery. In contrast, the failure of NPY mRNA levels to change suggests a different regulatory mechanism for NPY expression or a different role for NPY in sympathetic neurotransmission.


Endocrinology ◽  
2006 ◽  
Vol 147 (4) ◽  
pp. 1860-1870 ◽  
Author(s):  
Karen E. Inouye ◽  
Jessica T. Y. Yue ◽  
Owen Chan ◽  
Tony Kim ◽  
Eitan M. Akirav ◽  
...  

Untreated diabetic rats show impaired counterregulation against hypoglycemia. The blunted epinephrine responses are associated with reduced adrenomedullary tyrosine hydroxylase (TH) mRNA levels. Recurrent hypoglycemia further impairs epinephrine counterregulation and is also associated with reduced phenylethanolamine N-methyltransferase mRNA. This study investigated the adaptations underlying impaired counterregulation in insulin-treated diabetic rats, a more clinically relevant model. We studied the effects of insulin treatment on counterregulatory hormones and adrenal catecholamine-synthesizing enzymes and adaptations after recurrent hypoglycemia. Groups included: normal; diabetic, insulin-treated for 3 wk (DI); and insulin-treated diabetic exposed to seven episodes (over 4 d) of hyperinsulinemic-hypoglycemia (DI-hypo) or hyperinsulinemic-hyperglycemia (DI-hyper). DI-hyper rats differentiated the effects of hyperinsulinemia from those of hypoglycemia. On d 5, rats from all groups were assessed for adrenal catecholamine-synthesizing enzyme levels or underwent hypoglycemic clamps to examine counterregulatory responses. Despite insulin treatment, fasting corticosterone levels remained increased, and corticosterone responses to hypoglycemia were impaired in DI rats. However, glucagon, epinephrine, norepinephrine, and ACTH counterregulatory defects were prevented. Recurrent hypoglycemia in DI-hypo rats blunted corticosterone but, surprisingly, not epinephrine responses. Norepinephrine and ACTH responses also were not impaired, whereas glucagon counterregulation was reduced due to repeated hyperinsulinemia. Insulin treatment prevented decreases in basal TH protein and increased PNMT and dopamine β-hydroxylase protein. DI-hypo rats showed increases in TH, PNMT, and dopamine β-hydroxylase. We conclude that insulin treatment of diabetic rats protects against most counterregulatory defects but not elevated fasting corticosterone and decreased corticosterone counterregulation. Protection against epinephrine defects, both without and with antecedent hypoglycemia, is associated with enhancement of adrenal catecholamine-synthesizing enzyme levels.


1997 ◽  
Vol 272 (6) ◽  
pp. R1897-R1903 ◽  
Author(s):  
V. L. Brooks ◽  
T. A. Huhtala ◽  
T. L. Silliman ◽  
W. C. Engeland

Experiments were performed in rats to test the hypothesis that adrenal mRNA levels of tyrosine hydroxylase (TH) and the norepinephrine transporter (NET) would be modified by water deprivation via activation of the sympathetic nervous system. TH and NET mRNA levels were measured using the ribonuclease protection assay. Adrenal TH mRNA was higher (P < 0.001) in water-deprived (921 +/- 39 fg/microgram total RNA) compared with the water-replete rats (657 +/- 45 fg/microgram total RNA). In contrast, water deprivation decreased (P < 0.01) adrenal NET mRNA levels (275 +/- 66 vs. 433 +/- 63 fg/microgram total RNA). The dehydration-induced increase in TH mRNA was prevented by prior splanchnicectomy, but the decrease in NET mRNA was produced even in the absence of adrenal nerves. Water deprivation also increased (P < 0.05) plasma adrenocorticotropic hormone (84 +/- 16 vs. 42 +/- 14 pg/ml) and corticosterone (358 +/- 87 vs. 44 +/- 15 ng/ml) levels. Interestingly, the corticosterone response was reduced (P < 0.05) by unilateral adrenal denervation. These results suggest that water deprivation increases both adrenal medullary and adrenocortical activity at least in part by stimulation of sympathetic nerve activity.


2008 ◽  
Vol 1 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Vicky Lahaie-Collins ◽  
Julie Bournival ◽  
Marilyn Plouffe ◽  
Julie Carange ◽  
Maria-Grazia Martinoli

Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP+) ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP+-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP+-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP+stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP+-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.


2005 ◽  
Vol 141 (2) ◽  
pp. 156-160 ◽  
Author(s):  
V. Compère ◽  
S. Li ◽  
J. Leprince ◽  
M.C. Tonon ◽  
H. Vaudry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document