Subregional amygdala functional connectivity: normative maps and influence of oral citalopram in healthy volunteers

2009 ◽  
Vol 42 (05) ◽  
Author(s):  
R Goya-Maldonado ◽  
VI Spoormaker ◽  
N Chechko ◽  
D Höhn ◽  
K Andrade ◽  
...  
2019 ◽  
Vol 130 (6) ◽  
pp. 870-884 ◽  
Author(s):  
Duan Li ◽  
Phillip E. Vlisides ◽  
Max B. Kelz ◽  
Michael S. Avidan ◽  
George A. Mashour ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Recent studies of anesthetic-induced unconsciousness in healthy volunteers have focused on functional brain connectivity patterns, but the protocols rarely parallel the depth and duration of surgical anesthesia. Furthermore, it is unknown whether there is a single functional connectivity pattern that correlates with general anesthesia for the duration of prolonged anesthetic exposure. Methods The authors analyzed electroencephalographic data in 30 healthy participants who underwent induction of anesthesia with propofol followed by 3 h of isoflurane anesthesia at age-adjusted 1.3 minimum alveolar concentration. Functional connectivity was assessed by frequency-resolved weighted phase lag index between frontal and parietal channels and between prefrontal and frontal channels, which were classified into a discrete set of states through k-means cluster analysis. Temporal dynamics were evaluated by the occurrence rate and dwell time distribution for each state as well as the transition probabilities between states. Results Burst suppression was present, with mean suppression ratio reducing from 44.8 ± 32.3% to 14.0 ± 20.2% (mean ± SD) during isoflurane anesthesia (P < 0.001). Aside from burst suppression, eight connectivity states were classified by optimizing the reproducibility of clustering solutions, with each characterized by distinct properties. The temporal progression of dominant states revealed a successive shifting trajectory from the state associated with alpha frontal-parietal connectivity to those associated with delta and alpha prefrontal-frontal connectivity during induction, which was reversed during emergence. Cortical connectivity was dynamic during maintenance period, and it was more probable to remain in the same state (82.0 ± 8.3%) than to switch to a different state (P < 0.001). However, transitions to other states were structured, i.e., occurred more frequently than expected by chance. Conclusions Anesthesia-induced alterations of functional connectivity are dynamic despite the stable and prolonged administration of isoflurane, in the absence of any noxious stimuli. Changes in connectivity over time will likely yield more information as a marker or mechanism of surgical anesthesia than any single pattern.


2018 ◽  
Vol 45 (6) ◽  
pp. 1309-1318 ◽  
Author(s):  
Xiaofen Zong ◽  
Maolin Hu ◽  
Spiro P Pantazatos ◽  
J John Mann ◽  
Gaohua Wang ◽  
...  

Abstract Respective changes in functional and anatomical connectivities of default mode network (DMN) after antipsychotic treatment have been reported. However, alterations in structure–function coupling after treatment remain unknown. We performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging in 42 drug-naive first-episode schizophrenia patients (FESP) both at baseline and after 8-weeks risperidone monotherapy, and in 38 healthy volunteers. Independent component analysis was used to assess voxel-wise DMN synchrony. A 3-step procedure was used to trace fiber paths between DMN components. Structure–function couplings were assessed by Pearson’s correlations between mean fractional anisotropy and temporal correlation coefficients in major tracts of DMN. Pretreatment, FESP showed impaired functional connectivity in posterior cingulate cortex/precuneus (PCC/PCUN) and medial prefrontal cortex (mPFC), but no abnormalities in fibers connecting DMN components. After treatment, there were significant increases in functional connectivities of PCC/PCUN. Increases in functional connectivity between PCC/PCUN and mPFC correlated with improvement in positive symptoms. The structure–function coupling in tracts connecting PCC/PCUN and bilateral medial temporal lobes decreased after treatment. No alterations in DMN fiber integrity were detected. This combination of functional and anatomical findings in FESP contributes novel evidence related to neurobehavioral treatment effects. Increased functional connectivities between PCC/PCUN and mPFC may be treatment response biomarkers for positive symptoms. Increases in functional connectivities, no alterations in fiber integrity, combined with decreases in structural–functional coupling, suggest that DMN connectivities may be dissociated by modality after 8-week treatment. Major limitations of this study, however, include lack of repeat scans in healthy volunteers and control group of patients taking placebo or comparator antipsychotics.


2018 ◽  
Vol 58 (5) ◽  
pp. 1821-1827 ◽  
Author(s):  
Deepika Bagga ◽  
Christoph Stefan Aigner ◽  
Johanna Louise Reichert ◽  
Cinzia Cecchetto ◽  
Florian Ph. S. Fischmeister ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document