Role of cathepsin G and neutrophil elastase in the lung host defense against mycobacterial infections

Pneumologie ◽  
2010 ◽  
Vol 64 (01) ◽  
Author(s):  
K Steinwede ◽  
K Walter ◽  
S Ehlers ◽  
T Welte ◽  
UA Maus
Pneumologie ◽  
2010 ◽  
Vol 64 (S 03) ◽  
Author(s):  
K Steinwede ◽  
K Walter ◽  
S Aly ◽  
J Bohling ◽  
R Maus ◽  
...  

Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
F Behler ◽  
K Steinwede ◽  
R Maus ◽  
J Bohling ◽  
UA Maus

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3220-3220
Author(s):  
Norah Verbout ◽  
Asako Itakura ◽  
Joseph Aslan ◽  
Erik Tucker ◽  
Andras Gruber ◽  
...  

Abstract Abstract 3220 Neutrophils play a vital role in innate immunity. Activated neutrophils can release proteolytic enzymes capable of neutralizing microbes and contributing importantly to host-defense. In severe sepsis, microbial components and pro-inflammatory cytokines can contribute to excess systemic neutrophil activation, resulting in tissue damage and organ failure. Thus, regulation of neutrophil activation and factor release is critical during pathologic conditions. Recent data indicate that components of the contact system modulate numerous inflammatory mediators during severe sepsis, but the exact role of the contact pathway in host-defense is not well understood. Inhibition of factor XII (FXII) in septic baboons reduces circulating neutrophil elastase (NE), a potent cytolytic enzyme that is increased during sepsis and implicated in organ failure. In vitro studies also indicate that both plasma kallikrein and FXIIa are capable of directly inducing NE release. While it is apparent that factors of the contact system interact with neutrophils, the molecular mechanisms by which these factors modulate neutrophil function have not been established. We therefore examined factor XI (FXI) neutrophil interactions and the cellular signaling pathways regulating FXIIa neutrophil stimulation. Human neutrophils were isolated from peripheral blood and resuspended in HBSS at a concentration of 0.5 ×106/ml. Cells were treated with FXI, FXIa, FXII, or FXIIa with or without fMLP (1 μM) stimulation, and the release of NE was assayed in the cell supernatants via ELISA. FXI, FXIa or FXII had no direct stimulatory effect on NE release compared to vehicle. While neither FXI nor FXII had any inhibitory effect on fMLP induced NE release, FXIa (10 μg/ml) modestly reduced fMLP-induced NE release by 20% (n=3). FXIIa (3, 10, 30 μg/ml) dose-dependently increased NE release in the presence of cytochalasin B (5 μg/ml), consistent with published data. To examine the mechanism by which FXIIa induces NE release, neutrophils were pretreated with signaling inhibitors and subsequently activated with FXIIa (30 μg/ml). Mammalian target of rapamycyin (mTOR) is a downstream serine/threonine kinase of the PI3K/AKT pathway that integrates signals from the microenvironment such as cytokines and growth factors. It is known that inhibition of mTORC2 abrogates neutrophil polarization and directed migration, thus we examined the role of rapamycin complex 1 and 2 (mTORC1/2) in mediating NE release. Pretreatment of cells with RAD001 (20 nM), an mTORC1 inhibitor had no effect on FXIIa-induced NE release, whereas the combined mTORC1/mTORC2 inhibitor, pp242 (100 nM) abrogated FXIIa-induced NE release, suggesting that components of the mTORC2 pathway contribute to NE release. Pretreatment with EHT 1864 (50 uM), a Rac inhibitor, significantly potentiated NE release induced by either fMLP or FXIIa, suggesting that Rac is also capable of modulating FXIIa signaling. Taken together, these results suggest that coagulation factors FXIa and FXIIa differentially modulate neutrophil function, and that the mTOR and Rac signaling pathways participate in FXIIa stimulated neutrophil activation. These data suggest that the contact pathway is involved in neutrophil stimulation through mTOR and Rac signaling, and thus modulating these pathways could be a potential therapeutic strategy for limiting excess neutrophil activation. Disclosures: Gruber: Aronora, LLC: Consultancy, Equity Ownership.


Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 297-304 ◽  
Author(s):  
Alexander M. Cole ◽  
Jishu Shi ◽  
Alejandro Ceccarelli ◽  
Yong-Hwan Kim ◽  
Albert Park ◽  
...  

Abstract The host defense roles of neutrophil elastase in a porcine skin wound chamber model were explored. Analysis of wound fluid by acid-urea polyacrylamide gel electrophoresis, Western blot, and bacterial overlay confirmed that the neutrophil-derived protegrins constituted the major stable antimicrobial polypeptide in the wound fluid. The application to the wound of 0.10 and 0.25 mM N-methoxysuccinyl-alanine-alanine-proline-valine (AAPV) chloromethyl ketone, a specific neutrophil elastase inhibitor (NEI), blocked the proteolytic activation of protegrins and diminished the associated antimicrobial activity as detected by radial diffusion assay againstStaphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans or by bacterial gel overlay against S epidermidis and E coli. The application of the related cathepsin G inhibitor (CGI), benzyloxycarbonyl-glycine-leucine-phenylalanine (ZGLF) chloromethyl ketone, had no effect. In wound chambers that received 106 colony-forming unit (CFU)/mL of S epidermidis, the presence of NEI significantly decreased the 24-hour clearance of bacteria from the wound compared to wounds treated with CGI or solvent only. Neither inhibitor, at 0.10 or 0.25 mM concentration, affected leukocyte accumulation or degranulation in the wound chambers. The in vitro microbicidal decrement due to NEI was restored by an amount of the specific protegrin (PG-1), which was equivalent to the measured difference of protegrin between control and inhibited chambers. Administration of 1 μg/mL exogenous PG-1 4 hours after chamber preparation was sufficient to normalize in vivo antimicrobial activity. Although pharmacologic NEIs are promising candidates as anti-inflammatory drugs, they may impair host defense in part by inhibiting the activation of cathelicidins by neutrophil elastase.


2012 ◽  
Vol 188 (9) ◽  
pp. 4476-4487 ◽  
Author(s):  
Kathrin Steinwede ◽  
Regina Maus ◽  
Jennifer Bohling ◽  
Sabrina Voedisch ◽  
Armin Braun ◽  
...  

1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


1990 ◽  
Vol 265 (11) ◽  
pp. 6092-6097
Author(s):  
C W Pratt ◽  
R B Tobin ◽  
F C Church

2021 ◽  
Vol 22 (2) ◽  
pp. 722
Author(s):  
Yukino Ogura ◽  
Kazuko Tajiri ◽  
Nobuyuki Murakoshi ◽  
DongZhu Xu ◽  
Saori Yonebayashi ◽  
...  

Neutrophils are recruited into the heart at an early stage following a myocardial infarction (MI). These secrete several proteases, one of them being neutrophil elastase (NE), which promotes inflammatory responses in several disease models. It has been shown that there is an increase in NE activity in patients with MI; however, the role of NE in MI remains unclear. Therefore, the present study aimed to investigate the role of NE in the pathogenesis of MI in mice. NE expression peaked on day 1 in the infarcted hearts. In addition, NE deficiency improved survival and cardiac function post-MI, limiting fibrosis in the noninfarcted myocardium. Sivelestat, an NE inhibitor, also improved survival and cardiac function post-MI. Flow cytometric analysis showed that the numbers of heart-infiltrating neutrophils and inflammatory macrophages (CD11b+F4/80+CD206low cells) were significantly lower in NE-deficient mice than in wild-type (WT) mice. At the border zone between intact and necrotic areas, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells was lower in NE-deficient mice than in WT mice. Western blot analyses revealed that the expression levels of insulin receptor substrate 1 and phosphorylation of Akt were significantly upregulated in NE-knockout mouse hearts, indicating that NE deficiency might improve cardiac survival by upregulating insulin/Akt signaling post-MI. Thus, NE may enhance myocardial injury by inducing an excessive inflammatory response and suppressing Akt signaling in cardiomyocytes. Inhibition of NE might serve as a novel therapeutic target in the treatment of MI.


Sign in / Sign up

Export Citation Format

Share Document