β,β-Disilylated Sulfones as Versatile Building Blocks in Organic Chemistry - A New Sulfonyl Carbanion Transmetalation

Synlett ◽  
2010 ◽  
Vol 2010 (17) ◽  
pp. 2579-2582
Author(s):  
Ullrich Jahn ◽  
Bertrand Puget
2013 ◽  
Vol 85 (8) ◽  
pp. 1683-1692 ◽  
Author(s):  
Valeria Corne ◽  
María Celeste Botta ◽  
Enrique D. V. Giordano ◽  
Germán F. Giri ◽  
David F. Llompart ◽  
...  

Modern organic chemistry requires easily obtainable chiral building blocks that show high chemical versatility for their application in the synthesis of enantiopure compounds. Biomass has been demonstrated to be a widely available raw material that represents the only abundant source of renewable organic carbon. Through the pyrolitic conversion of cellulose or cellulose-containing materials it is possible to produce levoglucosenone, a highly functionalized chiral structure. This compound has been innovatively used as a template for the synthesis of key intermediates of biologically active products and for the preparation of chiral auxiliaries, catalysts, and organocatalysts for their application in asymmetric synthesis.


2020 ◽  
Vol 74 (7) ◽  
pp. 561-568
Author(s):  
Ivana Némethová ◽  
Leonidas-Dimitrios Syntrivanis ◽  
Konrad Tiefenbacher

Self-assembled molecular capsules, host structures that form spontaneously when their building blocks are mixed, have been known since the 1990s. They share some basic similarities with enzyme pockets, as they feature defined hydrophobic binding pockets that are able to bind molecules of appropriate size and shape. The potential to utilize such host structures for catalysis has been explored since their discovery; however, applications that solve current challenges in synthetic organic chemistry have remained limited. In this short article, we discuss the challenges associated with the use of molecular capsules as catalysts, and highlight some recent applications of supramolecular capsules to overcome challenges in synthetic organic chemistry.


2017 ◽  
Vol 12 (5) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Sofia Pombal ◽  
Yaiza Hernández ◽  
David Diez ◽  
Eily Mondolis ◽  
Aldahir Mero ◽  
...  

Carvone has corroborated its versatility as starting material for building blocks synthesis in organic chemistry, being achieved a new chiral lactone. It has been done a study on the antioxidant activity against superoxide of carvone and a chloro derivative that show the potent activity of the natural product ( R)-carvone, 1.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 308 ◽  
Author(s):  
Francesca Tentori ◽  
Elisabetta Brenna ◽  
Danilo Colombo ◽  
Michele Crotti ◽  
Francesco Gatti ◽  
...  

Chiral β-nitroalcohols are important building blocks in organic chemistry. The synthetic approach that is based on the enzyme-mediated reduction of α-nitroketones has been scarcely considered. In this work, the use of commercial alcohol dehydrogenases (ADHs) for the reduction of aromatic and aliphatic nitroketones is investigated. High conversions and enantioselectivities can be achieved with two specific ADHs, affording either the (S) or (R)-enantiomer of the corresponding nitroalcohols. The reaction conditions are carefully tuned to preserve the stability of the reduced product, and to avoid the hydrolytic degradation of the starting substrate. The further manipulation of the enantioenriched nitroalcohols into Boc-protected amminoalcohols is also described.


2016 ◽  
Vol 192 (2) ◽  
pp. 204-211 ◽  
Author(s):  
Grzegorz Mlostoń ◽  
Paulina Grzelak ◽  
Róża Hamera-Fałdyga ◽  
Marcin Jasiński ◽  
Paulina Pipiak ◽  
...  

2003 ◽  
Vol 75 (10) ◽  
pp. 1433-1442 ◽  
Author(s):  
Nicola Giubellina ◽  
Wim Aelterman ◽  
Norbert De Kimpe

The synthetic potential of lithio 3-halo-1-azaallylic anions as building blocks in organic chemistry and especially in heterocyclic chemistry will be highlighted by the synthesis of functionalized imines, obtained after reaction of 3-halo-1-azaallylic anions with het- eroatom-substituted electrophiles. Thus, the latter generated functionalized imines are suitable building blocks for the synthesis of a whole range of heterocycles and physiologically active compounds, including agrochemicals and pharmaceuticals. 3-Halo-1-azaallylic anions were used in the synthesis of N-alkyl-3,3-dichloroazetidines, 2,3-disubstituted pyrroles, piperidines, 2-substituted pyridines, 2-alkoxytetrahydrofurans,etc., from which a large range of useful and interesting chemicals can be produced, e.g., 2-azetines and 9-alkyl- 2-phenyl-3a-beta,4,6,7,8,9,9a-beta,9b-beta-octahydro-1H-pyrrolo [3,4,h]quinoline-1,3-diones. The utility of the present methodology is demonstrated by the synthesis of the pheromone (S)-manicone, the sulfur-containing flavor compound 2-[(methylthio)methyl ]-2-butenal, and some agrochemical and pharmaceutical compounds.


Author(s):  
Niccolò Chiaramonte ◽  
Maria Novella Romanelli ◽  
Elisabetta Teodori ◽  
Claudiu Supuran

Carbonic Anhydrases (CAs) are a superfamily of metalloenzymes widespread in all life kingdoms, classified into seven genetically different families (α-θ). These enzymes catalyse the reversible hydration of carbonic anhydride (CO2), generating bicarbonate (HCO3-) and protons (H+). Fifteen isoforms of human CA (hCA I-XV) have been isolated, their presence being fundamental for the regulation of many physiological processes. In addition, overexpression of some isoforms has been associated with the outbreak or the progression of several diseases. For this reason, for a long time CA inhibitors (CAIs) are used in the control of glaucoma and as diuretics. Furthermore, the search for new potential CAIs for other pharmacological applications is a very active field. Amino acids constitute the smallest fundamental monomers of protein and, due to their useful bivalent chemical properties, are widely used in organic chemistry. Both proteinogenic and non-proteinogenic amino acids have been extensively used to synthesize CAIs. This article provides an overview of the different strategies that have been used to design new CAIs containing amino acids, and how these bivalent molecules influence the properties of the inhibitors.


2020 ◽  
Author(s):  
Yi Jiang ◽  
Jiaoting Pan ◽  
Tao Yang ◽  
Joel Jun Han Lim ◽  
Yu Zhao ◽  
...  

Development of a catalytic multicomponent reaction by orthogonal activation of readily available substrates for the streamlined difunctionalization of alkynes is a compelling objective in organic chemistry. Alkyne carboalkynylation, in particular, offers a direct entry to valuable 1,3-enynes with different substitution patterns. Here, we show that the synthesis of stereodefined 1,3-enynes featuring a trisubstituted olefin is achieved by merging alkynes, alkynyl bromides and redox-active <i>N</i>-(acyloxy)phthalimides through nickel-catalyzed reductive alkylalkynylation. Products are generated in up to 89% yield as single regio- and <i>E</i> isomers. Transformations are tolerant of diverse functional groups and the resulting 1,3-enynes are amenable to further elaboration to synthetically useful building blocks. With olefin-tethered <i>N</i>-(acyloxy)phthalimides, a cascade radical addition/cyclization/alkynylation process can be implemented to obtain 1,5-enynes. The present study underscores the crucial role of redox-active esters as superior alkyl group donors compared to haloalkanes in reductive alkyne dicarbofunctionalizations.


Sign in / Sign up

Export Citation Format

Share Document