scholarly journals Estrogen Plus Estrogen Receptor Antagonists Alter Mineral Production by Osteoblasts In Vitro

2012 ◽  
Vol 44 (02) ◽  
pp. 154-154 ◽  
Author(s):  
O. Brennan ◽  
F. O’Brien ◽  
L. McNamara
mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Arielle Butts ◽  
Kristy Koselny ◽  
Yeissa Chabrier-Roselló ◽  
Camile P. Semighini ◽  
Jessica C. S. Brown ◽  
...  

ABSTRACT Cryptococcosis is an infectious disease of global significance for which new therapies are needed. Repurposing previously developed drugs for new indications can expedite the translation of new therapies from bench to beside. Here, we characterized the anti-cryptococcal activity and antifungal mechanism of estrogen receptor antagonists related to the breast cancer drugs tamoxifen and toremifene. Tamoxifen and toremifene are fungicidal and synergize with fluconazole and amphotericin B in vitro. In a mouse model of disseminated cryptococcosis, tamoxifen at concentrations achievable in humans combines with fluconazole to decrease brain burden by ~1 log10. In addition, these drugs inhibit the growth of Cryptococcus neoformans within macrophages, a niche not accessible by current antifungal drugs. Toremifene and tamoxifen directly bind to the essential EF hand protein calmodulin, as determined by thermal shift assays with purified C. neoformans calmodulin (Cam1), prevent Cam1 from binding to its well-characterized substrate calcineurin (Cna1), and block Cna1 activation. In whole cells, toremifene and tamoxifen block the calcineurin-dependent nuclear localization of the transcription factor Crz1. A large-scale chemical genetic screen with a library of C. neoformans deletion mutants identified a second EF hand-containing protein, which we have named calmodulin-like protein 1 (CNAG_05655), as a potential target, and further analysis showed that toremifene directly binds Cml1 and modulates its ability to bind and activate Cna1. Importantly, tamoxifen analogs (idoxifene and methylene-idoxifene) with increased calmodulin antagonism display improved anti-cryptococcal activity, indicating that calmodulin inhibition can be used to guide a systematic optimization of the anti-cryptococcal activity of the triphenylethylene scaffold. IMPORTANCE Worldwide, cryptococcosis affects approximately 1 million people annually and kills more HIV/AIDS patients per year than tuberculosis. The gold standard therapy for cryptococcosis is amphotericin B plus 5-flucytosine, but this regimen is not readily available in regions where resources are limited and where the burden of disease is highest. Herein, we show that molecules related to the breast cancer drug tamoxifen are fungicidal for Cryptococcus and display a number of pharmacological properties desirable for an anti-cryptococcal drug, including synergistic fungicidal activity with fluconazole in vitro and in vivo, oral bioavailability, and activity within macrophages. We have also demonstrated that this class of molecules targets calmodulin as part of their mechanism of action and that tamoxifen analogs with increased calmodulin antagonism have improved anti-cryptococcal activity. Taken together, these results indicate that tamoxifen is a pharmacologically attractive scaffold for the development of new anti-cryptococcal drugs and provide a mechanistic basis for its further optimization.


2012 ◽  
Vol 10 (36) ◽  
pp. 7334 ◽  
Author(s):  
Jose Juan Rodríguez ◽  
Kamila Filipiak ◽  
Maciej Maslyk ◽  
Jakub Ciepielski ◽  
Sebastian Demkowicz ◽  
...  

1993 ◽  
Vol 46 (12) ◽  
pp. 1890-1893 ◽  
Author(s):  
YASUHIRO HORI ◽  
YUKIKO ABE ◽  
NOBUHARU SHIGEMATSU ◽  
TOSHIO GOTO ◽  
MASAKUNI OKUHARA ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2465 ◽  
Author(s):  
Marilena Marraudino ◽  
Alice Farinetti ◽  
Maria-Angeles Arevalo ◽  
Stefano Gotti ◽  
GianCarlo Panzica ◽  
...  

Developmental actions of estradiol in the hypothalamus are well characterized. This hormone generates sex differences in the development of hypothalamic neuronal circuits controlling neuroendocrine events, feeding, growth, reproduction and behavior. In vitro, estradiol promotes sexually dimorphic effects on hypothalamic neuritogenesis. Previous studies have shown that developmental actions of the phytoestrogen genistein result in permanent sexually dimorphic effects in some behaviors and neural circuits in vivo. In the present study, we have explored if genistein, like estradiol, affects neuritogenesis in primary hypothalamic neurons and investigated the estrogen receptors implicated in this action. Hypothalamic neuronal cultures, obtained from male or female embryonic day 14 (E14) CD1 mice, were treated with genistein (0.1 µM, 0.5 µM or 1 µM) or vehicle. Under basal conditions, female neurons had longer primary neurites, higher number of secondary neurites and higher neuritic arborization compared to male neurons. The treatment with genistein increased neuritic arborization and the number of primary neurites and decreased the number of secondary neurites in female neurons, but not in male neurons. In contrast, genistein resulted in a significant increase in primary neuritic length in male neurons, but not in female neurons. The use of selective estrogen receptor antagonists suggests that estrogen receptor α, estrogen receptor β and G-protein-coupled estrogen receptors are involved in the neuritogenic action of genistein. In summary, these findings indicate that genistein exerts sexually dimorphic actions on the development of hypothalamic neurons, altering the normal pattern of sex differences in neuritogenesis.


Sign in / Sign up

Export Citation Format

Share Document