Shikonin inhibits colitis-associated colorectal dysplasias in a mouse model of azoxymethane/dextran sulfate sodium colitis

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
JL Ríos ◽  
A Martí ◽  
I Andújar ◽  
RM Giner ◽  
MC Recio
2021 ◽  
Vol 9 (2) ◽  
pp. 370
Author(s):  
Hyunjoon Park ◽  
Soyoung Yeo ◽  
Seokwon Kang ◽  
Chul Sung Huh

The role of the gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) has been in focus for decades. Although metagenomic observations in patients/animal colitis models have been attempted, the microbiome results were still indefinite and broad taxonomic presumptions were made due to the cross-sectional studies. Herein, we conducted a longitudinal microbiome analysis in a dextran sulfate sodium (DSS)-induced colitis mouse model with a two-factor design based on serial DSS dose (0, 1, 2, and 3%) and duration for 12 days, and four mice from each group were sacrificed at two-day intervals. During the colitis development, a transition of the cecal microbial diversity from the normal state to dysbiosis and dynamic changes of the populations were observed. We identified genera that significantly induced or depleted depending on DSS exposure, and confirmed the correlations of the individual taxa to the colitis severity indicated by inflammatory biomarkers (intestinal bleeding and neutrophil-derived indicators). Of note, each taxonomic population showed its own susceptibility to the changing colitis status. Our findings suggest that an understanding of the individual susceptibility to colitis conditions may contribute to identifying the role of the gut microbes in the pathogenesis of IBD.


Mutagenesis ◽  
2020 ◽  
Vol 35 (2) ◽  
pp. 161-167
Author(s):  
Christopher Kirby ◽  
Ayesha Baig ◽  
Svetlana L Avlasevich ◽  
Dorothea K Torous ◽  
Shuchang Tian ◽  
...  

Abstract Inflammatory bowel disease (IBD) is an important risk factor for gastrointestinal cancers. Inflammation and other carcinogenesis-related effects at distal, tissue-specific sites require further study. In order to better understand if systemic genotoxicity is associated with IBD, we exposed mice to dextran sulfate sodium salt (DSS) and measured the incidence of micronucleated cells (MN) and Pig-a mutant phenotype cells in blood erythrocyte populations. In one study, 8-week-old male CD-1 mice were exposed to 0, 1, 2, 3 or 4% w/v DSS in drinking water. The 4-week in-life period was divided into four 1-week intervals—alternately on then off DSS treatment. Low volume blood samples were collected for MN analysis at the end of each week, and cardiac blood samples were collected at the end of the 4-week period for Pig-a analyses. The two highest doses of DSS were observed to induce significant increases in reticulocyte frequencies. Even so, no statistically significant treatment-related effects on the genotoxicity biomarkers were evident. While one high-dose mouse showed modestly elevated MN frequencies during the DSS treatment cycles, it also exhibited exceptionally high reticulocyte frequencies (e.g. 18.7% at the end of the second DSS cycle). In a second study, mice were treated with 0 or 4% DSS for 9–18 consecutive days. Exposure was continued until rectal bleeding or morbidity was evident, at which point the treatment was terminated and blood was collected for MN analysis. The Pig-a assay was conducted on samples collected 29 days after the start of treatment. The initial blood specimens showed highly elevated reticulocyte frequencies in DSS-exposed mice (mean ± SEM = 1.75 ± 0.10% vs. 13.04 ± 3.66% for 0 vs. 4% mice, respectively). Statistical analyses showed no treatment-related effect on MN or Pig-a mutant frequencies. Even so, the incidence of MN versus reticulocytes in the DSS-exposed mice were positively correlated (linear fit R2 = 0.657, P = 0.0044). Collectively, these results suggest that in the case of the DSS CD-1 mouse model, systemic effects include stress erythropoiesis but not remarkable genotoxicity. To the extent MN may have been slightly elevated in a minority of individual mice, these effects appear to be secondary, likely attributable to stimulated erythropoiesis.


2007 ◽  
Vol 52 (9) ◽  
pp. 2113-2121 ◽  
Author(s):  
C. D. Tran ◽  
J. M. Ball ◽  
S. Sundar ◽  
P. Coyle ◽  
G. S. Howarth

2014 ◽  
Vol 29 (4) ◽  
pp. 749-756 ◽  
Author(s):  
Takahiro Hiratsuka ◽  
Masafumi Inomata ◽  
Shigeru Goto ◽  
Yoshimasa Oyama ◽  
Toshiaki Nakano ◽  
...  

2001 ◽  
Vol 121 (6) ◽  
pp. 1407-1416 ◽  
Author(s):  
Harry S. Cooper ◽  
Lynette Everley ◽  
Wen–Chi Chang ◽  
Gordon Pfeiffer ◽  
Bryan Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document