Niedrigdosis pädiatrische Thorax CT: Vergleich zwischen 70 kV Untersuchungen und 100 kV Untersuchungen mit spektraler Photonenabschirmung

Author(s):  
M Weidner ◽  
T Henzler ◽  
S Schoenberg ◽  
K Neff ◽  
C Hagelstein
Keyword(s):  
Informatica ◽  
2017 ◽  
Vol 28 (3) ◽  
pp. 439-452
Author(s):  
Mykolas J. Bilinskas ◽  
Gintautas Dzemyda ◽  
Mantas Trakymas
Keyword(s):  
Ct Scan ◽  

2007 ◽  
Vol 16 (04) ◽  
pp. 583-592 ◽  
Author(s):  
HYOUNGSEOP KIM ◽  
MASAKI MAEKADO ◽  
JOO KOOI TAN ◽  
SEIJI ISHIKAWA ◽  
MASAAKI TSUKUDA

Medical imaging systems such as computed tomography, magnetic resonance imaging provided a high resolution image for powerful diagnostic tool in visual inspection fields by physician. Especially MDCT image can be used to obtain detailed images of the pulmonary anatomy, including pulmonary diseases such as the pulmonary nodules, the pulmonary vein, etc. In the medical image processing technique, segmentation is a difficult task because surrounding soft tissues and organs have similar CT values and sometimes contact with each other. We propose a new technique for automatic segmentation of lung regions and its classification for ground-glass opacity from the extracted lung regions by computer based on a set of the thorax CT images. In this paper, we segment the lung region for extraction of the region of interest employing binarization and labeling process from the inputted each slices images. The region having the largest area is regarded as the tentative lung regions. Furthermore, the ground-glass opacity is classified by correlation distribution on the slice to slice from the extracted lung region with respect to the thorax CT images. Experiment is performed employing twenty six thorax CT image sets and 96% of recognition rates were achieved. Obtained results are shown along with a discussion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Doil Kim ◽  
Jiyoung Choi ◽  
Duhgoon Lee ◽  
Hyesun Kim ◽  
Jiyoung Jung ◽  
...  

AbstractA novel motion correction algorithm for X-ray lung CT imaging has been developed recently. It was designed to perform for routine chest or thorax CT scans without gating, namely axial or helical scans with pitch around 1.0. The algorithm makes use of two conjugate partial angle reconstruction images for motion estimation via non-rigid registration which is followed by a motion compensated reconstruction. Differently from other conventional approaches, no segmentation is adopted in motion estimation. This makes motion estimation of various fine lung structures possible. The aim of this study is to explore the performance of the proposed method in correcting the lung motion artifacts which arise even under routine CT scans with breath-hold. The artifacts are known to mimic various lung diseases, so it is of great interest to address the problem. For that purpose, a moving phantom experiment and clinical study (seven cases) were conducted. We selected the entropy and positivity as figure of merits to compare the reconstructed images before and after the motion correction. Results of both phantom and clinical studies showed a statistically significant improvement by the proposed method, namely up to 53.6% (p < 0.05) and up to 35.5% (p < 0.05) improvement by means of the positivity measure, respectively. Images of the proposed method show significantly reduced motion artifacts of various lung structures such as lung parenchyma, pulmonary vessels, and airways which are prominent in FBP images. Results of two exemplary cases also showed great potential of the proposed method in correcting motion artifacts of the aorta which is known to mimic aortic dissection. Compared to other approaches, the proposed method provides an excellent performance and a fully automatic workflow. In addition, it has a great potential to handle motions in wide range of organs such as lung structures and the aorta. We expect that this would pave a way toward innovations in chest and thorax CT imaging.


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Senol Kobak ◽  
Fidan Sever ◽  
Oya Sivrikoz ◽  
Ahmet Karaarslan

A 46-year-old male patient diagnosed with ankylosing spondylitis presented to our polyclinic with complaints of pain, swelling, and limitation in joint mobility in both ankles and erythema nodosum skin lesions in both pretibial sites. The sacroiliac joint graphy and the MRI taken revealed active and chronic sacroiliitis. On the thorax CT, multiple mediastinal and hilar lymphadenopathies were reported. Mediastinoscopic excisional lymph node biopsy was taken and noncalcified granulomatous structures, lymphocytes, and histiocytes were determined on histopathological examination. The patients were diagnosed with ankylosing spondylitis, sarcoidosis, and Löfgren’s syndrome. NSAIDs, sulfasalazine, and low dose corticosteroid were started. Significant regression was seen in the patient’s subjective and laboratory assessments.


2017 ◽  
Vol 8 (2) ◽  
pp. 87-91
Author(s):  
Samsun Samsun ◽  
Legia Prananto ◽  
Novita Wulandari

The picture quality get from CT Scan of Thorax which required optimal parameter selection that’s right, one of them the selection of slice thickness. The method taken from theses that have been publish in the year 2013. The results of the research show the percentage of the value of the average spatial resolution of 2.5 mm slice thickness is (33.3%), noise (17.8%), artefact (1%). On the thickness of the slices 5 mm spatial resolution is (17%), noise (8.9%), artefacts (0%). On the thickness of slices of 7.5 mm spatial resolution is (8.9%), noise (11.1%), artefacts (53.3%). While the thickness of the slices the spatial resolution is 10 mm (8.9%), noise (22.2%), artefacts (68.9%). Based on the research results obtained the conclusion that thickness 2.5 mm slices on Thorax CT-Scan images produce better picture quality than with the thickness of the slices 5 mm, 7.5 mm, 10 mm, because the spatial resolution is more clear so as to reduce noise and artifacts.


2017 ◽  
Vol 4 (12) ◽  
pp. 1898-1910
Author(s):  
ANBAR Ruchan ◽  
AVCI Deniz ◽  
CETİNKAYA Ali

Background: We provided a comparative presentation of complications seen in 114 patients with port catheter implantation. In addition, we addressed whether patients with catheter-related thrombosis have distinctive features by assessing patients who developed thrombosis either at the catheter implant site or vascular bed. Methods: In this study, we analyzed data from 114 patients who underwent subclavian venous port catheter implantation by a single surgeon at Kayseri Teaching Hospital (Turkey) during 2013 to 2016. Subclavian port catheter was inserted in all cases. The diagnosis of port thrombosis was made by Doppler sonography or thorax CT scan with contrast enhancement in patients presenting with edema at upper extremity, swelling or pain at neck, and/or dysfunctional port. Results: Seroma was detected in only one case, lymphedema developed in one case (0.8%), and pneumothorax was observed in 3 cases. The subclavian vein was implanted on the right side in all patients with pneumothorax. None of these cases were associated with thrombosis. Port infection was observed in one case (0.8%). There was also one case (0.8%) of skin necrosis. The port was removed in 15 patients due to several reasons, which are indicated in Table 2. Thromboembolic events were observed in 11 of the 114 patients while port thrombosis was observed in 7 patients. The rate of hypertension in the thromboembolism group was 61.1% (11/18 individual) while the rate of hypertension in the group without thromboembolism was 28.1% (27/96 individuals); this difference was statistically significant (p = 0.006). Conclusion: In this study, based on complications observed in patients with catheter-related thrombosis, factors such as smoking or diabetes mellitus were seen to be linked to thromboembolism and should be taken into consideration. Moreover, it was observed that hypertension had a significant association with thromboembolism.


2010 ◽  
pp. 303-313
Author(s):  
Matthias Hübler ◽  
Thea Koch
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document